Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2015

Til dokument

Sammendrag

Methods for control of couch grass (Elymus repens L.) with reduced tillage and cover crops to achieve low risk of nitrogen (N) and phosphorus (P) leaching were investigated. Treatments with reduced post-harvest tillage (one or two passes with duckfoot cultivator), hoeing between rows in combination with a cover crop, and a cover crop mown twice during autumn were compared with treatments with conventional disc cultivation and the control without tillage or cover crop. The study was conducted on a sandy soil in Sweden with measurements of N and P leaching. A 2-year experimental protocol was used, repeated twice. Treatments were implemented in the first year, and effects on couch grass (shoot density, shoot and rhizome biomass) were measured during autumn and in the second year. Significant effects of a single duckfoot cultivation and cover crop strategies were observed on couch grass shoot density in autumn but persistent effects were not verified. In conclusion, a single cultivation after harvest instead of repeated reduced the risk of N leaching and a cover crop in combination with hoeing or mowing effectively reduced it. Repeated cultivations resulted in mean annual N leaching of 26 kg N ha−1 compared with 20 kg in the treatment with one cultivation, 17 kg in the control, 16 and 12 kg in cover crop treatments with mowing and hoeing, respectively. The P leaching was small (0.04–0.09 P ha−1 year−1), but there were indications of increased P drainage water concentrations in the treatment with a cover crop which was mown.

Til dokument

Sammendrag

Two potential control methods for Elymus repens, which do not disturb the soil, are post-harvest mowing and competition from under-sown cover crops. Our aim was to quantify the effect of cover crop competition and mowing on E. repens and to evaluate the potential for combining the two methods. We present a two-factorial split-plot experiment conducted at three locations in Sweden, in two experimental rounds conducted in 2011–2012 and 2012–2013. A spring cereal crop was under-sown with perennial ryegrass, red clover or a mixture of the two (subplots). Under-sown crops were either not mowed, or mowed once or twice post-harvest (main plots). This was followed by ploughing and a new spring cereal crop the next year. Mowing twice reduced autumn shoot biomass by up to 66% for E. repens and 50% for cover crops compared with the control, twice as much as mowing once. Pure ryegrass and mixture treatments reduced E. repens shoot biomass by up to 40% compared with the control. Mowing twice reduced rhizome biomass in the subsequent year by 35% compared with the control, while the pure red clover treatment increased it by 20–30%. Mowing twice and treatments including red clover resulted in higher subsequent grain yields. We concluded that repeated mowing has the potential to control E. repens, but a low-yielding cover crop has insufficient effect on rhizome biomass. Clover–grass mixtures are of interest as cover crops, because they have the potential to increase subsequent crop yield and even at low levels they reduce E. repens above-ground autumn growth.

Til dokument

Sammendrag

Keeping horses in groups is widely recommended but limited information is available about how this is implemented in practice. The aim of this survey was to describe how horses are kept in the Nordic countries in relation to sex, age, breed, and equestrian discipline and to assess owners’ attitudes toward keeping horses in groups. Horse owners in Denmark, Finland, Norway, and Sweden were approached using a web-based questionnaire, which was translated into 4 languages and distributed online via equestrian forums, organizations, and social media. The number of respondents was 3,229, taking care of 17,248 horses. Only 8% of horses were never kept in groups, 47% were permanently grouped for 24 h/d, and 45% were stabled singly but grouped during turnout. Yearlings were most often permanently kept in groups (75%), mares and geldings more commonly during parts of the day (50 and 51%, respectively), and stallions were often kept alone (38%). Icelandic horses were more likely to be permanently kept in groups (36%) than warmbloods (16%) and ponies (15%). Twice as many competition horses (51%) were never grouped compared with horses used for breeding (20%) or leisure purposes (15%). The majority of respondents (86%) strongly agreed that group housing benefits horse welfare and that it is important for horses to have the company of conspecifics (92%). Nevertheless, not all horses were kept in groups, showing that attitudes toward group housing may not necessarily reflect current management. The risk of injury was a concern of many respondents (45%), as was introducing unfamiliar horses into already established groups (40%) and challenges in relation to feeding in groups (44%). Safety of people (23%) and difficulties handling groupkept horses (19%) were regarded as less problematic. Results suggest that the majority of horses have the possibility to freely interact with other horses, either as fulltime members of a group during 24 h/d or during turnout. Future research should address the extent to which being a part-time member of a group affects horse welfare. For permanent group housing to become more widespread, such as it is the case for most farm animals, future research could focus on solving some of the reoccurring problems perceived with keeping horses in groups. The dissemination of evidence-based information on all aspects around keeping horses in groups can ultimately stimulate further positive changes in the management of group-kept horses.