Divisjon for miljø og naturressurser
Miljøvennlig teknologi for karbonlagring i jord (JORDKARBON)
Slutt: des 2019
Start: apr 2015
Formål: å utvikle kunnskapsbasen og den teknologiske plattformen ved NIBIO for vurdering og utvikling av miljøvennlig karbonlagring i jord.
Prosjektmedarbeidere
Inghild Økland Alice Budai Marie Louise Davey Hanna Silvennoinen Erik J. Joner Christophe Moni Simon Weldon| Status | Pågående |
| Start- og sluttdato | 11.04.2015 - 31.12.2019 |
| Prosjektleder | Daniel Rasse |
| Divisjon | Divisjon for miljø og naturressurser |
| Avdeling | Biogeokjemi og jordkvalitet |
Publikasjoner i prosjektet
Forfattere
Erik J. JonerSammendrag
Det er ikke registrert sammendrag
Forfattere
Erik J. JonerSammendrag
Det er ikke registrert sammendrag
Forfattere
Erik J. JonerSammendrag
Det er ikke registrert sammendrag
Forfattere
Erik J. JonerSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Alice Budai Daniel Rasse Hugh Riley Vegard Martinsen Ievina Sturite Erik J. Joner Adam O'Toole Samson Øpstad Thomas CottisSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Erik J. JonerSammendrag
Det er ikke registrert sammendrag
Forfattere
Erik J. JonerSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Norway is strongly committed to the Paris Climate Agreement with an ambitious goal of 40% reduction in greenhouse gas emission by 2030. The land sector, including agriculture and forestry, must critically contribute to this national target. Beyond emission reduction, the land sector has the unique capacity to actively removing CO2 from the atmosphere through biological carbon storage in biomass and in soils. Soils are the largest reservoir of terrestrial carbon, and relatively small changes in soil carbon content can have an amplified mitigation effect on the Earth’s climate. Therefore, improved management of soils for carbon storage is receiving a lot of attention, for example through international political initiatives such as the “4-permill” initiative. However, in Norway, many mitigation measures targeting soil carbon might negatively impact food production and economic activity. For example, soil carbon storage can be increased by shifting from cereal crop production to grasslands, but Norway already has abundant grassland and a comparatively small area dedicated to cereals. Another such issue is cultivation on drained peatland, where food is produced at the expense of large losses of soil carbon as CO2 to the atmosphere. Therefore, there is a need to look for win-win solutions for soil carbon storage, which benefit both food production and climate mitigation. Large-scale conversion of agricultural and forest waste biomass to biochar is such an option, and is considered the activity with the largest potential for soil carbon sequestration in Norway. Biochar has been demonstrated to have a mean residence time exceeding 100 years in Norwegian field conditions (Rasse et al, 2017), and no negative effects on plant and soils has been observed. However, despite the convincing benefits of biochar as a climate mitigation solution, it has not yet advanced much beyond the research stage, notably because its effect on yield are too modest. Here, we will first present the comparative advantage of biochar technology as compared to traditional agronomy methods for large-scale C storage in Norwegian agricultural soils. We will further discuss the need for developing innovations in pyrolysis and nutrient-rich waste recycling leading to biochar-fertilizer products as win-win solution for carbon storage and food production.
Forfattere
Daniel RasseSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Alice BudaiSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Erik J. JonerSammendrag
Det er ikke registrert sammendrag
Forfattere
Adam O'Toole Christophe Moni Simon Weldon Anne Schols Monique Carnol Bernard Bosman Daniel RasseSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Daniel RasseSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Lea Piscitelli Pierre-Adrien Rivier Donato Mondelli Teodoro Miano Daniel Rasse Erik J. JonerSammendrag
Det er ikke registrert sammendrag
Forfattere
Claudia Kammann Jim Ippolito Nikolas Hagemann Nils Borchard Maria Luz Cayuela José M. Estavillo Teresa Fuertes-Mendizabal Simon Jeffery Jürgen Kern Jeff Novak Daniel Rasse Sanna Saarnio Hans-Peter Schmidt Kurt Spokas Nicole Wrage-MönnigSammendrag
Det er ikke registrert sammendrag
Forfattere
Daniel RasseSammendrag
Det er ikke registrert sammendrag
Forfattere
Daniel RasseSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Alice Budai Lucia Calucci Daniel Rasse Line Tau Strand Annelene Pengerud Daniel Wiedemeier Samuel Abiven Claudia ForteSammendrag
Infrared and 13C solid state nuclear magnetic resonance spectroscopies and benzene polycarboxylic acids (BPCA) analysis were used to characterize the structural changes occurring during slow pyrolysis of corncob and Miscanthus at different temperatures from 235 °C to 800 °C. In the case of corncob, a char sample obtained from flash carbonization was also investigated. Spectroscopic techniques gave detailed information on the transformations of the different biomass components, whereas BPCA analysis allowed the amount of aromatic structures present in the different chars and the degree of aromatic condensation to be determined. The results showed that above 500 °C both corncob and Miscanthus give polyaromatic solid residues with similar degree of aromatic condensation but with differences in the structure. On the other hand, at lower temperatures, char composition was observed to depend on the different cellulose/hemicellulose/lignin ratios in the feedstocks. Flash carbonization was found to mainly affect the degree of aromatic condensation.
Forfattere
Adam Thomas O'tooleSammendrag
Det er ikke registrert sammendrag
Forfattere
Adam Thomas O'tooleSammendrag
Det er ikke registrert sammendrag
Forfattere
Adam Thomas O'tooleSammendrag
Det er ikke registrert sammendrag
Forfattere
Adam Thomas O'tooleSammendrag
Det er ikke registrert sammendrag
Forfattere
Adam Thomas O'tooleSammendrag
Det er ikke registrert sammendrag
Forfattere
Daniel RasseSammendrag
Det er ikke registrert sammendrag
Forfattere
Alice BudaiSammendrag
Det er ikke registrert sammendrag
Forfattere
Ingunn Burud Christophe Moni Andreas Svarstad Flø Cecilia Marie Futsæther Markus Steffens Daniel RasseSammendrag
Det er ikke registrert sammendrag
Forfattere
Elisa Lopez-Capel Kor Zwart Simon Shackley Romke Postma John Stenström Daniel Rasse Alice Budai Bruno GlaserSammendrag
Det er ikke registrert sammendrag
Forfattere
Esben Bruun Andrew Cross Jim Hammond Victoria Nelissen Daniel Rasse Henrik Hauggaard-NielsenSammendrag
Det er ikke registrert sammendrag
Forfattere
Ma Xingzhu Baoku Zhou Alice Budai Alhaji S. Jeng Xiaoyu Hao Dan Wei Yulan Zhang Daniel RasseSammendrag
Biochar is a carbon-rich solid product obtained by pyrolysis of biomass. Here, we investigated multiple biochars produced under slow pyrolysis (235–800 °C), flash carbonization, and hydrothermal carbonization (HTC), using Scanning Electron Microscope—Energy Dispersive X-ray Spectroscopy (SEM-EDX) in order to determine whether SEM-EDX can be used as a proxy to characterize biochars effectively. Morphological analysis showed that feedstock has an integrated structure compared to biochar; more pores were generated, and the size became smaller when the temperature increased. Maximum carbon content (max. C) and average carbon content (avg. C) obtained from SEM-EDX exhibited a positive relationship with pyrolysis temperature, with max. C correlating most closely with dry combustion total carbon content. The SEM-EDX O/C ratios displayed a consistent response with the highest treatment temperature (HTT). The study suggests that SEM-EDX produces highly consistent C, oxygen (O), and C/O ratios that deserve further investigation as an operational tool for characterization of biochar products.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Alessandra Lagomarsino Bruce Linquist Arlene Adviento-Borbe Rossana Monica Ferrara Roberta Pastorelli Grazia Pallara Daniel Rasse Hanna Marika SilvennoinenSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Daniel RasseSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Alice Budai Daniel Rasse Claudia Forte Line Tau Strand Samuel Abiven C. Rumpel Annelene Pengerud Alain Plante M. A. AlexisSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag