Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2007

Abstract

The Norwegian Monitoring Programme for Forest Damage (OPS) has since its start registered damage to selected trees. The aim of the registrations has been to explain variations in crown density and crown colour. In answer to international requests, the Norwegian Forest and Landscape Institute has prepared a short guide to the determination of the most common forms of damage found in Norwegian forests...

Abstract

In the context of an ongoing project on REMote sensing of FORest health (REM-FOR), we analyze airborne high-resolution hyperspectral images of a pine-dominated region in southeast Norway heavily attacked by the Pine sawfly Neodiprion sertifer, leading to severe defoliation. Leaf Area Index (LAI) is used as a proxy of the crown density, and comparing LAI maps from before and after the attack lead to indicators for damage extent. We discuss the application of the Forest Reflectance Model (FRT) of Kuusk and Nilson, which was designed for the application to (managed) Northern European Forests, to model the spectral response from the canopy. It is based on conventional forest inventory data, species-dependent parametrized crown shapes, canopy LAI, needle clumping index, and needle optical properties. Here, however, we run the model in an inverse mode, by iteratively minimizing the discrepancy between measured and simulated reflectances, and predicting the LAI, keeping known parameters of the model fixed. The LAI values are then compared to those obtained with either ground-based Licor LAI2000 measurements, or with airborne laser-scanning. Some preliminary results of this modelling concept for the case study are discussed.

To document

Abstract

We studied first winter frost-heaving damage to one-year-old Picea abies (L.) Karst. seedlings planted in gaps made by group fellings (large circular gaps, ca. 500 m(2)) and single-tree selection cuttings (small irregularly shaped gaps, ca. 175 m 2), as well as in uncut forest. One-month-old seedlings were planted on manually exposed LF, Ae, and B horizons that emulated various intensities and depths of scarification. The three experimental sites were located in multistoried Pinus sylvestris L. or P. abies forests on sandy loam or silt loam in southeastern Norway. Altogether, 5% of seedlings sustained frost heaving damage on the LF horizon, compared with 20% on the Ae horizon and 45% on the B horizon. On average, 31% of the seedlings in large gaps incurred frost-heaving damage compared with 20% in small gaps and 19% in uncut forest. Exposed roots and poorly anchored or uplifted seedlings were recurring classes of damage, especially on the B horizon and in large gaps. The above- versus below-ground biomass ratio of seedlings was higher on the B than on the Ae horizon in uncut forest and large gaps, inferring broken roots. Therefore, to reduce the risk of frost-heaving damage, shallow soil preparation and smaller gap sizes should be used.

Abstract

The potential tradeoffs between vegetative and reproductive growth is a constant challenge for the forage plant breeders. Breeding for seed production has inevitably played a secondary role compared to improvements of the vegetative production. In this paper the current status regarding genetic variation, genotype x environment interactions, heritability estimates and mapping of quantitative trait loci (QTL) for seed yield and seed yield components in grasses and legumes are reviewed, with special focus on important forage grasses. Investigations of seed yield components have shown that components contributing to an increased utilization of the reproductive potential, like seed set and seed retention, seems efficient in increasing seed yield without adverse effects on the vegetative production. The generation of transgenic plants (GMO) have been reported for many forage species, and genetic engineering will increasingly be used to manipulate traits like nutritive value, resistance to fungal and viral diseases, and the reproductive system like male and female sterility and apomixis. Turf and forage grasses, and forage legumes are outcrossing species with prolific pollen production and pollination facilitated by wind or insects. They are potentially some of the most problematic crops when it comes to gene flow by pollen especially during the generations of seed multiplication. GM plants with engineered reproductive systems will pose new challenges for the seed producers. Co-existence of GM grasses and legumes with conventional and organic seed production will be very difficult to establish, and commercialization of GM cultivars will therefore certainly require gene containment technologies that prevent or reduce transgene escape. Mapping of QTLs, identification of markers and candidate genes associated with seed yield components, and the utilization of comparative genomics with cereal species have revealed several key components which may facilitate development of markers for marker-assisted breeding for the improvement of seed yield.

To document

Abstract

High mortality among chicks, due to fragmentation and changes in habitat caused by commercial forestry, is considered one of the main reasons for the general decline in capercaillie Tetrao urogallus in boreal forests. Using GPS satellite telemetry, we studied the movement patterns of young capercaillie broods: 1) to test if this new technology could be applied to gain more detailed insight into behaviour and habitat selection at a small spatial scale, and if so, 2) to compare the broods' relative use of planted and older, naturally regenerated forests. Hens of four broods with chicks 2-7 days old were captured and fitted with 90-g backpacks containing GPS units and VHF transmitters. The GPS units were programmed to record positions every 15 minutes, the shortest interval possible. With a storage capacity of 450 positions, movements could be monitored for ca 4.5 days. In our study area (Varaldskogen) with moderate topography, the GPS technology performed quite well. A total of 1,277 positions were obtained (84% of potential maximum), of which 77% were within 20 in of the true position of the brood. The movement patterns of the four broods were quite similar, with a mean speed of 83.2 m +/- 9.9 (SE) per hour during the 4.5-day tracking period. Broods moved almost continuously during the 24-hour cycle, presumably foraging, although their speed was slower at night. The two oldest broods whose initial age was seven days moved faster than the two younger broods whose initial age was two and three days, respectively. Strong autocorrelation among successive positions made us examine habitat selection using a binominal choice method for each brood separately. When broods were inside old 'natural' forest, they remained there instead of moving into plantations. When inside plantations, they did not discriminate between remaining there and moving into nearby old forest, but they tended to move faster in plantations than in old forest. Clearly, the new, cost-effective GPS telemetry offers new and better opportunities for studying small-scale brood movement. Very frequent and accurate positions can be obtained without either disturbing the birds or leaving scent marks that may attract predators.