Belachew Asalf Tadesse

Research Scientist

(+47) 934 79 432
belachew.asalf.tadesse@nibio.no

Place
Ås H7

Visiting address
Høgskoleveien 7, 1433 Ås

To document

Abstract

Ten elite maize inbred lines were selected based on all over per se performance and gray leaf spot disease reaction. Crosses were made in a 10×10 half-diallel mating design to produce 45 F1 single cross hybrids. The experiment was conducted at Bako national maize research center in 2015 and evaluation of the crosses were made at Bako and Jimma research centers in 2016 by using alpha lattice design with three replications including three commercial checks. All the necessary yield, agronomic and GLS disease data were recorded. In all the studied traits highly significant genotypic differences were observed indicating the existence of genetic variability among the crosses. Analysis of variance for the combining ability indicated GCA and SCA mean squares were significant at (P < 0.001) for all traits except for anthesis-silking interval, ear per plant, ear diameter, lesion length and width. The ratios of GCA/SCA variances for agronomic parameters and all disease parameters were greater than unity except for that of first disease appearance implying the predominance of additive gene actions. Among all inbred lines, P1, P4, P7, P8 and P9 were identified as desirable sources of resistant genes for GLS disease resistance with positive days of first disease appearance and negative disease incidence, severity and AUDPC values for GCA effects. From the analysis of epidemiological data and disease progress curves the Logistic model (R2=96.5) better described the disease progress curves than the Gompertz model (R2=92.5) indicating the presence of delayance in epidemics and the inflection point of the GLS. P1, P7 and P8 were identified as a good general combiners for yield, yield related traits and GLS disease parameters. Thus, these parents were recommended to be used in breeding programs with a purpose of developing high yielder and GLS resistant single cross hybrids. In conclusion this study identified potential high yielding and GLS resistant single cross hybrids (CML-395/CML-383, CML-395/Sc-22, CML-395/CML-197 and CML-383/CML-197). Therefore, it is recommended that these hybrids can be used for direct production where this disease is the most prevalent and/or for further breeding programs in generating novel hybrids for future use.

Abstract

Optimization of produce quality and storage conditions to reduce loss during long-term storage of root vegetables in Norway (OPTIROOT, 2016-2019) Authors: Thomsen, M.G., Indergaard, E., Asalf, B., Heltoft, P., Wold, A.B., Nordskog, B., Guren, G, Dyste, J. & Larsen, H. Author’s affiliation: Key words: carrot, swede, celeriac, storage technology, diseases, physiological disorder, packaging, nutrition Reducing yield loss along the supply chains is important for resource sustainability in vegetable production. Norwegian root vegetables are typically stored 6 to 8 months before consumption, often resulting in 20-30% loss post harvest. In OptiRoot 26 producers, refrigeration-technology companies, sensor developer, grower’s organisation, agricultural advisory service, and four research institutes are cooperating and conducting research to improve storage quality of carrot, swede and celeriac. The research focuses on: i) Fertilizer/Boron deficiency affects the storage quality of root vegetables and amount, methods of application, and timing of boron are studied in swede and celeriac. ii) Interaction between storage conditions/functions and produce quality of the root vegetables through mapping of technical features of 27 storages. The storage conditions recorded are relative humidity, air movement, temperature in boxes and storages, and physical features of storages. In addition, the physiological and health status of the produces are assessed one week before harvest, postharvest and post-storage. The prevalence of fungal diseases or disorders varied from region to region and between storages. iii) Effects of pre-storage wound healing are tested using seven different temperature strategies (direct to 0° C vs. down 0.2° C per day vs. 1° C per day) and low/high humidity in carrot (2016/17/18), celeriac and swede (2017/18/19). Preliminary results show that wound healing reduced loss due to fungal infections in carrot iv) CO2 concentration, temperature and relative humidity were recorded over time inside carrot storage bin liners with different numbers of perforations. An initial screening indicated a positive correlation between number of holes and number of fresh roots. As a post storage method, coating of swede with chitosan oligomers will be tested to inhibit growth of post-harvest pathogens. In conclusion, OptiRoot have gained good progress and promising preliminary results by connecting data on biology and technology for reduction of loss during long-term storage.

Abstract

Researchers in plant pathology and entomology often study the interaction between a host plant and its pathogen or an insect pest separately. Although studying single pathogen or insect interactions with a host plant is critical to understand the basic infection processes and to model each disease or pest attack separately, this is an extreme simplification of nature’s complexity, where multiple pests and pathogens often appear in parallel and interact with each other and their host plant. Effective management of pests and diseases require understanding of the complex interaction beteween diseases and pests on the host. Under natural conditions, wheat plants are subjected to attack by several insects and pathogens simultaneously or sequentially. The Bird cherry-oat aphid (Rhopalosiphum padi) and the necrotrophic pathogen Parastagonospora nodorum (syn. Stagonospora nodorum) the causal agent of Stagonospora nodorum blotch (SNB) are economically important pests of wheat in Norway. Since they colonize a common host, they may interact directly through competition for resources or indirectly by affecting the host response either positively (induced resistance) or negatively (induced susceptibility or biopredisposition). The effect of aphid infestation on P. nodorum infection and development of the disease could be an important factor in predicting SNB epidemics. However, studies on this multitrophic interactions are scarce. We conducted controlled greenhouse experiments to study the effect of aphid infestation on subsequent SNB development. The wheat cultivar ‘Bjarne’ was treated as follows:1) Aphid infested + insecticide sprayed + P. nodorum inoculated; 2) Insecticide sprayed + P. nodorum inoculated; 3) Water sprayed + P. nodorum inoculated; 4) Control plants (without aphid, insecticide or P. nodorum). When plants were at ca. BBCH 37, 18 adult female aphids (R. padi) were released per pot (treatment 1). Aphid inoculated plants were kept in an insect proof cage in a greenhouse compartment at 20°C, 70% RH, and 16 h photoperiod. Plants for the other treatments were kept in separate insect proof cages in the same greenhouse. Ten days after aphid release, plants infested with aphids (treatment 1) were sprayed with the insecticide BISCAYA (a.i. thiacloprid) at recommended concentration to remove aphids. Plants in treatment 2 and 3 were sprayed with the insecticide and water, respectively. Twenty-four hours after application of the insecticide or water, plants in treatment 1, 2, and 3 were inoculated with P. nodorum spore suspension (106 spores ml-1). The experiment included three replicates and was repeated two times. SNB incidence and severity were recorded. SNB incidence and severity were significantly higher on aphid infested plants than on non-infested plants (P < 0.05). Ten days after P. nodorum inoculation, disease severity were about 3-fold higher on aphid infested plants (treatment 1) than on non-infested plants (treatment 2 and 3). Plants in the blank control (treatment 4) were free of aphids and showed no symptoms of SNB . Infestation of wheat plants by the bird cherry-oat aphid prior to fungal inoculation enhanced the severity of SNB. P. nodorum is a necrotrophic pathogen that lives on nutrients from disintegrated plant cells. The increase in severity of SNB on aphid infested plants could be due to the increased number of dead or dying cells around the aphids feeding sites. However, whether aphids activity induced local or systemic susceptbility to plants is not yet known and needs to be studied further.

To document

Abstract

A collection of four clonal isolates of Podosphaera aphanis was heterothallic and was composed of two mutually exclusive mating types. Cleistothecial initials approximate to 20 to 30 mu m in diameter were observed within 7 to 14 days after pairing of compatible isolates and developed into morphologically mature ascocarps within 4 weeks after initiation on both potted plants maintained in isolation and in field plantings in New York State and southern Norway. Ascospores progressed through a lengthy maturation process over winter, during which (i) the conspicuous epiplasm of the ascus was absorbed; (ii) the osmotic potential of the ascospore cytoplasm increased, resulting in bursting of prematurely freed spores in water; and, finally, (iii) resulting in the development of physiologically mature, germinable, and infectious ascospores. Release of overwintered ascospores from field collections was coincident with renewed plant growth in spring. Overwintered cleistothecia readily dehisced when wetted and released ascospores onto glass slides, detached strawberry leaves, and leaves of potted plants. Plant material exposed to discharged ascospores developed macroscopically visible mildew colonies within 7 to 10 days while noninoculated controls remained mildew free. Scanning electron and light microscopy revealed that cleistothecia of P. aphanis were enmeshed within a dense mat of hyphae on the persistent leaves of field-grown strawberry plants and were highly resistant to removal by rain while these leaves remained alive. In contrast, morphologically mature cleistothecia on leaves of nine deciduous perennial plant species were readily detached by simulated rain and seemed adapted for passive dispersal by rain to other substrates. Contrary to many previous reports, cleistothecia appear to be a functional source of primary inoculum for strawberry powdery mildew. Furthermore, they differ substantially from cleistothecia of powdery mildews of many deciduous perennial plants in their propensity to remain attached to the persistent leaves of their host during the intercrop period.

Abstract

Several non-chemical control agents are now registered and available for control of powdery mildews. However, there is little or no information about their efficacy against strawberry powdery mildew, caused by Podosphera aphanis. Trials were conducted to compare the performance of non-chemical control agents to chemical fungicides under laboratory, greenhouse and high plastic tunnel conditions. The treatments included: AQ10 (active ingredient is Ampelomyces quisqualis, a hyperparasite on powdery mildew), AQ10 + Silwet Gold (organosilicon adjuvant, enhances distribution and wetting), Vacciplant (active ingredient is laminarin, an extract from brown algae), JMS Stylet oil (mineral oil), Rape seed oil + detergent, Thiovit (wettable sulphur), Topas 100 EC (penconazole) + Candit (kresoximmethyl) and water as control. In the greenhouse, one quarter of the recommended dose was used either daily in one experiment or three times per week in another. In the field, half of recommended rates were applied twice weekly. Both in the greenhouse and tunnel experiments, the chemical control Topas + Candit and AQ10 + Silwet Gold significantly reduced disease severity. AQ10,Vacciplant and Thiovit were moderately effective when applied daily in the greenhouse trial, but not significantly different from the water control when applied three time per week in the greenhouse and twice a week in the tunnel experiment. In the plastic tunnel, the JMS stylet oil and Rape seed oil + detergent treatments caused severe phytotoxic reaction (necrosis). AQ10 used alone had the poorest performance in the tunnel. This indicated that the spreader either enhances the effect of AQ10 and/or the spreader itself had an effect. In laboratory experiments with powdery mildew grown on strawberry leaflets in Petri dishes, spore germination after treatments with water, Stylet oil, Candit and Thiovit were 74, 53, 8 and 7%, respectively. The effect of Thiovit found in the laboratory was not reflected in the greenhouse and plastic tunnel trials. We will further explore the protectant, curative and eradicative effects of the compounds included here.

Abstract

Development of ontogenic resistance to powdery mildew (Podosphaera aphanis) in strawberry fruit has not been quantified, and thus cannot be exploited in disease management programs. Four commercially-relevant strawberry cultivars were evaluated for ontogenic resistance to powdery mildew. Fruits were inoculated at one of the four growth stages: flowering, green, white and early pink fruit. There was a significant difference between and within cultivars at the bloom and green stage of inoculations (P <0.05) for both disease incidence and severity. On average 16.4, 39.5, 48.7, and 60.3 % of the fruits inoculated at bloom developed powdery mildew in cultivars Elan, Korona, Frida and Inga, respectively. None of the cultivars developed powdery mildew when inoculated at the pink stage. It may be concluded that flowers and green fruits of strawberry were much more susceptible to powdery mildew infection than white and pink fruits. The high susceptibility of cultivars at the flower and early green stages seemed coincident with the succulent nature of the fruits at these stages, making it easy for penetration and establishment of mildew. Control measures targeting at these critical windows of fruit susceptibility are likely to reduce yield loss.