Isabella Børja
Research Professor
Biography
My professional background is mycology and forest pathology. I am a senior research scientist/research professor (2015) with PhD in forest pathology (Norwegian University of Life Sciences, NMBU, 1995).
My professional focus is forest health, diagnosing of diseases and disorders in forest trees, evaluation of biotic and abiotic damage in forests, invasive pathogens, identification/effects of fluoride emmissions on vegetation, monitoring of forest damage, biological processes below- and above ground with impact on forest health, interactions among hosts and pathogens, symbiotic interactions: mycorrhiza, role of roots and fungi in carbon sequestration in forest soils.
Authors
Ari Hietala Wilson Lara Henao A. Kolsgaard Simon Seljegard Nina Elisabeth Nagy Isabella Børja Tor Arne Justad Yngve Rekdal Even Bergseng Halvor SolheimAbstract
Forest grazing by free-roaming livestock is a common practice in many countries. The forestry sector sees the practice as unfortunate owing to several reasons, such as damages inflicted by grazing in young plantations. Concerning Norway spruce forests, a tree species known to develop wood decay with high frequency followed from stem bark damage, there is a strong perception among foresters that the trampling damage caused by livestock on the superficial root system of this tree leads to decay. Because of the very limited scientific documentation available on this topic, we pursued a clarification by investigating three 38- to 56-year-old Norway spruce forests used for silvopasture. Two types of injuries were observed on exposed roots: bark cracks characterized by resin exudation, and injuries involving localized bark peeling and exposure of the underlying wood. These injuries occurred up to 250 cm away from the root collar, with the sector 50–150 cm away from the root collar showing the highest incidence of injuries. In two of the forest stands, wood within the injured root areas was primarily colonized by the wound parasite Corinectria fuckeliana or species of the order Helotiales, fungi that do not cause wood decay. Wood colonization of injured roots by Heterobasidion species, the most frequent wood decay fungi of Norway spruce, was common in the third stand, but only in a few cases it was possible to deduce that the colonization had probably initiated via trampling injuries on roots. In a few cases, an injury was located at stem base at the root collar height along paths used by animals, and in such cases, it was obvious that stem colonization by Heterobasidion species had initiated via the wound. The relatively small amount of data warrants caution when drawing conclusions. Considering the high establishment frequency of decay via stem bark wounds of Norway spruce observed in previous studies, our data would suggest that roots are generally better equipped to defend themselves upon infliction of superficial wounds than stem of this tree species. The likelihood of trampling injuries leading to decay may vary considerably between different stands, this presumably depending on the level of local propagule pressure by pathogenic wood decay fungi and the frequency of damages close to root collar.
Authors
Isabella BørjaAbstract
No abstract has been registered
Authors
Paal Krokene Isabella Børja Elena Carneros Toril Drabløs Eldhuset Nina Elisabeth Nagy Daniel Volařík Roman GebauerAbstract
Drought-induced mortality is a major direct effect of climate change on tree health, but drought can also affect trees indirectly by altering their susceptibility to pathogens. Here, we report how a combination of mild or severe drought and pathogen infection affected the growth, pathogen resistance and gene expression in potted 5-year-old Norway spruce trees [Picea abies (L.) Karst.]. After 5 weeks of drought, trees were inoculated with the fungal pathogen Endoconidiophora polonica. Combined drought–pathogen stress over the next 8 weeks led to significant reductions in the growth of drought-treated trees relative to well-watered trees and more so in trees subjected to severe drought. Belowground, growth of the smallest fine roots was most affected. Aboveground, shoot diameter change was most sensitive to the combined stress, followed by shoot length growth and twig biomass. Both drought-related and some resistance-related genes were upregulated in bark samples collected after 5 weeks of drought (but before pathogen infection), and gene expression levels scaled with the intensity of drought stress. Trees subjected to severe drought were much more susceptible to pathogen infection than well-watered trees or trees subjected to mild drought. Overall, our results show that mild drought stress may increase the tree resistance to pathogen infection by upregulating resistance-related genes. Severe drought stress, on the other hand, decreased tree resistance. Because drought episodes are expected to become more frequent with climate change, combined effects of drought and pathogen stress should be studied in more detail to understand how these stressors interactively influence tree susceptibility to pests and pathogens.