Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2011

Sammendrag

Organic fields are often assumed to have less pests and more beneficials than conventionally managed fields. We monitored 12 Norwegian strawberry fields, six organic and six conventional, by sampling leaves two times per year in 2002-2003. Young folded leaflets were visually inspected for eggs and adult females of strawberry mite (Phytonemus pallidus fragariae), and mature leaves were used for extraction of mobile stages of two-spotted spider mite (Tetranychus urticae). The spider mites were examined for infection of the mite-pathogenic fungus Neozygites floridana. Predatory mites (Phytoseiidae) were recorded on both leaf types, and the females mounted and identified. Soil was also sampled from each field, to study the natural occurrence of entomopathogenic nematodes. All samples were taken 0-13 metres from the border vegetation. Both pest mites tended to be more abundant in conventional than in organic fields, while the number of phytoseiid mites was very low in both growing systems. Nevertheless, three phytoseiid species were recorded for the first time in Norway: Amblyseius rademacheri Dosse, Neoseiulus kodryensis (Kolodochka) and Neoseiulus reductus (Wainstein). N. floridana infection found in T. urticae females varied from 0-19%, and was higher in 2002 than in 2003. The fungus was recorded at least once in all 12 fields, and there was no consistent difference between the two growing systems. In 2002 there was a significant negative correlation between % T. urticae with N. floridana hyphal bodies found in the first sampling and the number of T. urticae present in the second sampling about four weeks later. Beneficial nematodes (mostly Steinernema) tended to occur in more of the organic than in the conventional soil samples. To sum up, both pests (T. urticae and P. pallidus) and one of the beneficial groups (entomopathogenic nematodes) seemed to conform to the expected difference between organic and conventional fields. There are many possible mechanisms related to the differences in pesticide and fertilization regimes that could lead to such a pattern. For the two remaining beneficials (N. floridana and Phytoseiidae) we could not find a consistent correlation between abundance and growing system.  

Sammendrag

The osmotic method has been used for many years in Norway and Sweden as a routine method for detection of Pyrenophora teres (anamorph Drechslera teres) and P. graminea (anamorph D. graminea) on barley. The method is based on the ability of Pyrenophora spp. to produce red pigments. However, it cannot distinguish between P. teres and P. graminea because they produce the same pigment. A validation study has been carried out with the aim to provide the necessary documentation for including the method in the International Rules for Seed Testing (ISTA Rules). Seven laboratories participated and each tested 3 x 300 seeds of three barley seed lots. Analyses of the results demonstrate that the method gives sufficient repeatability and there is no particular problem with this test at a laboratory level. Furthermore, in previous studies with the osmotic method organized by a Nordic working group, it has been shown that the osmotic method easily gives reproducible results for Pyrenophora teres/P. graminea in barley when used by experienced laboratories. Moreover, the osmotic method is well suited for routine analyses because it is quick and easy to carry out. The study showed, that if used correctly and with proper equipment the osmotic method for detection of Pyrenophora teres/P. graminea is easy to perform and it showed good conformity amongst laboratories.

Sammendrag

 This article examines the potential of fish waste for liquid and gaseous biofuels, with focus on Norway but also some consideration of other markets. Fish production and processing wastes are a significant source of material for bioenergy production. Norway is a country of high fish production, but currently low development of the bioenergy sector due to the ample availability of hydropower. World fish consumption per capita nearly doubled over the last 45 years. The resulting increase in fish processing wastes and the expansion of the renewable energy market imply that fish processing wastes could play a part in the future of biofuels. Fish processing wastes rich in fat may be used for biodiesel, although blending with other diesels may be necessary to meet biodiesel specification standards. Fish processing wastes are also suitable for biogas production, although these materials will have to be added as a co-substrate to boost the biogas production of plants treating agricultural or municipal wastes, due to the inhibitory effects of long chain fatty acids and high protein concentrations. A sustainable use of biogas in Norway would be as fuel for vehicles, as is the preferred future utilization in neighboring Sweden. In other countries with better developed gas grids, an increasing proportion of biogas will likely be used for grid injection to replace natural gas.  

Sammendrag

The process of minimising medicine use through dialogue based animal health and welfare planning. Livestock are important in many organic farming systems, and it is an explicit goal to ensure high levels of animal health and welfare (AHW) through good management. In two previous EU network projects, NAHWOA & SAFO, it was concluded that this is not guaranteed merely by following organic standards. Both networks recommended implementation of individual animal health plans to stimulate organic farmers to improve AHW. These plans should include a systematic evaluation of AHW and be implemented through dialogue with each farmer in order to identify goals and plan improvements. 11 research institutions in 7 European countries have been involved in the ANIPLAN project with the main objective to minimise medicine use in organic dairy herds through active and well planned AHW promotion and disease prevention. The project consisted of 5 work packages, 4 of which comprised research activities building on current research projects, new applications across borders, exchange of knowledge, results and conclusions between participating countries, and adopting them to widely different contexts. International and national workshops have facilitated this exchange.  In the project, animal health and welfare planning principles for organic dairy farms under diverse conditions were developed. Animal health and welfare assessments, based on the WelfareQuality parameters, were conducted in different types of organic dairy herds across Europe. Finally, guidelines for communication about animal health and welfare promotion in different settings were also developed relevant to both  existing animal health advisory services or farmer groups such as the Danish Stable School system and the Dutch network program. These proceedings contain the presentations at the final workshop, which also included invited external guests. The proceedings also contain three reports which are deliverables of the project. They are focused on the process of planning for better animal health and welfare, and how farmers and facilitators manage this situation. The focus areas are animal health planning, AHW assessment using animal based parameters and development of advisory systems and farmer groups.

Til dokument

Sammendrag

The Ritland structure is a newly discovered impact structure, which is located in southwestern Norway. The structure is the remnant of a simple crater 2.5 km in diameter and 350 m deep, which was excavated in Precambrian gneissic rocks. The crater was filled by sediments in Cambrian times and covered by thrust nappes of the Caledonian orogen in the Silurian–Devonian. Several succeeding events of uplift, erosion, and finally the Pleistocene glaciations, disclosed this well-preserved structure. The erosion has exposed brecciated rocks of the original crater floor overlain by a thin layer of melt-bearing rocks and postimpact crater-filling breccias, sandstones, and shales. Quartz grains with planar deformation features occur frequently within the melt-bearing unit, confirming the impact origin of the structure. The good exposures of infilling sediments have allowed a detailed reconstruction of the original crater morphology and its infilling history based on geological field mapping.