Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2019
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Inna Ryzhik Dmitriy Pugovkin Mikhail Makarov Michael Roleda Larisa Basova Grigoriy VoskoboynikovSammendrag
The viability and physiological state of brown macroalgae Fucus vesiculosus and its associated epiphytic bacteria exposed to diesel water-accommodated fraction (WAF), as well as the capacity of this association to deplete petroleum hydrocarbons (HCs) were experimentally tested. After a 6-day exposure treatment, the algal-surface associated bacteria were identified as primarily hydrocarbon-oxidising bacteria (HOB), and the algal-HOB association was able to deplete petroleum hydrocarbons from the diesel WAF by 80%. The HOB density on the algal surface exposed to diesel WAF was 350% higher compared to the control (i.e. HOB density on the algal surface exposed to ambient seawater), which suggest that they actively proliferated in the presence of hydrocarbons and most likely consumed hydrocarbons as their primary organic substrate. Exposure to diesel WAF did not affect the metabolic activity of F. vesiculosus. Higher lipid peroxidation was observed in F. vesiculosus exposed to diesel WAF while catalase concentration decreased only during the first day of exposure. Results suggest F. vesiculosus is tolerant to oil pollution and the algal-HOB association can efficiently deplete petroleum hydrocarbons in oil-contaminated seas.
Sammendrag
Green-sprouting potato seed tubers in light and elevated temperatures are vital for production in short-season climates. Using light-emitting diodes (LEDs) to inhibit sprout elongation during pre-sprouting may represent an energy-efficient alternative to traditional indoor light sources. Sprout growth inhibition and some photomorphogenic responses were therefore examined in potato cultivars exposed to LEDs of different wavelength maxima and irradiance rates. Red LED (660 nm) produced the strongest inhibition of sprout elongation at very low irradiances 10–100 nmol m−2 s−1, while far-red LED (735 nm) produced the strongest inhibition at higher irradiances. This inhibitory pattern was similar in all cultivars, although the degree of inhibition varied. The colour of sprouts and tuber skin remained etiolated under far-red LED, in contrast to LEDs between 380 and 660 nm which developed green colour intensity in an irradiance-dependent manner. Mixtures of red and far-red light, and pulses including red/far-red reversals did not produce stronger inhibition, except in some instances where total fluence was increased. Furthermore, green-sprouting under different LED colours did not seem to affect subsequent emergence and growth after planting. The current results suggest an involvement of multiple phytochromes in de-etiolation and sprout growth inhibition in seed potato tubers, which may be selectively utilised in LED-based green-sprouting in red and far-red wavelengths.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag