Henk Maessen

Seniorrådgiver

(+47) 901 15 629
henk.maessen@nibio.no

Sted
Særheim

Besøksadresse
Postvegen 213, NO-4353 Klepp stasjon

Til dokument

Sammendrag

CONTEXT For high latitude countries like Norway, one of the biggest challenges associated with greenhouse production is the limited availability of natural light and heat, particularly in winters. This can be addressed by changes in greenhouse design elements including energy saving equipment and supplemental lighting, which, however, also can have a huge impact on investments, economic performance, resources used and environmental consequences of the production. OBJECTIVE The study aimed at identifying a greenhouse design from a number of feasible designs that generated highest Net Financial Return (NFR) and lowest fossil fuel use for extended seasonal (20th January to 20th November) and year-round tomato production in Norway using different capacities of supplemental light sources as High Pressure Sodium (HPS) and Light Emitting Diodes (LED), heating from fossil fuel and electricity sources and thermal screens by implementing a recently developed model for greenhouse climate, tomato growth and economic performance. METHODS The model was first validated against indoor climate and tomato yield data from two commercial greenhouses and then applied to predict the NFR and fossil fuel use for four locations: Kise in eastern Norway, Mære in mid Norway, Orre in southwestern Norway and Tromsø in northern Norway. The CO2 emissions for natural gas used for heating the greenhouse and electricity used for lighting were calculated per year, unit fruit yield and per unit of cultivated area. A local sensitivity analysis (LSA) and a global sensitivity analysis (GSA) were performed by simultaneously varying the energy and tomato prices. RESULTS AND CONCLUSIONS Across designs and locations, the highest NFR for both production cycles was observed in Orre (116.9 NOK m−2 for extended season and 268.5 NOK m−2 for year-round production). Fossil fuel was reduced significantly when greenhouse design included a heat pump and when extended season production was replaced by a year-round production. SIGNIFICANCE The results show that the model is useful in designing greenhouses for improved economic performance and reduced CO2 emissions from fossil fuel use under different climate conditions in high latitude countries. The study aims at contributing to research on greenhouse vegetable production by studying the effects of various designs elements and artificial lighting and is useful for local tomato growers who either plan to build new greenhouses or adapt existing ones and in policy formulation regarding incentivizing certain greenhouse technologies with an environmental consideration or with a focus on increasing local tomato production.

Til dokument

Sammendrag

Studies of whole-plant responses of tomato to light environments are limited and cannot be extrapolated from observations of seedlings or short-term crops in growth chambers. Effects of artificial light sources like high pressure sodium (HPS) and light emitting diodes (LED) are mainly studied as supplement to sunlight in greenhouses. Since natural sunlight is almost neglectable in Norway during wintertime, we could study effects of different types of artificial light on crop growth and production in tomato. The goal of this experiment was to quantify the effects of artificial HPS top-light, installed at the top of the canopy, and LED inter-light, installed between plant rows, on fresh and dry matter production and fruit quality of greenhouse tomatoes under controlled and documented conditions. Our aim was to optimize yield under different light conditions, while avoiding an unfavourable source-sink balance. Tomato plants were grown under HPS top light with an installed capacity of 161, 242 and 272 W m−2 combined with LED inter-light with an installed capacity of 0, 60 or 120 W m−2. We used stem diameter as a trait to regulate air temperature in different light treatments in order to retain plant vigour. Results show that both HPS top light and LED inter-light increased tomato yield. However, the positive effect of supplemental LED inter-light decreased at higher amounts of HPS top light. Under the conditions in this experiment, with neglectable incoming solar radiation, an installed amount of 242 Watt m-2 HPS top light and a daily light integral (DLI) of 30 mol m-2 day-1 resulted in best light use efficiency (in gram fresh tomato per mol). Addition of LED inter-light to HPS top light reduced light use efficiency. Results show that winter production using artificial light in Norway is more energy efficient compared to production under sunlight in southern countries. Results can be used for modelling purposes.

Til dokument

Sammendrag

Greenhouses are complex systems whose size, shape, construction material, and equipment for climate control, lighting and heating can vary largely. The greenhouse design can, together with the outdoor weather conditions, have a large impact on the economic performance and the environmental consequences of the production. The aim of this study was to identify a greenhouse design out of several feasible designs that generated the highest net financial return (NFR) and lowest energy use for seasonal tomato production across Norway. A model-based greenhouse design method, which includes a module for greenhouse indoor climate, a crop growth module for yield prediction, and an economic module, was applied to predict the NFR and energy use. Observed indoor climate and tomato yield were predicted using the climate and growth modules in a commercial greenhouse in southwestern Norway (SW) with rail and grow heating pipes, glass cover, energy screens, and CO2-enrichment. Subsequently, the NFR and fossil fuel use of five combinations of these elements relevant to Norwegian conditions were determined for four locations: Kise in eastern Norway (E), Mære in midwestern Norway (MW), Orre in southwestern Norway (SW) and Tromsø in northern Norway (N). Across designs and locations, the highest NFR was 47.6 NOK m−2 for the greenhouse design with a night energy screen. The greenhouse design with day and night energy screens, fogging and mechanical cooling and heating having the lowest fossil energy used per m2 in all locations had an NFR of −94.8 NOK m−2. The model can be adapted for different climatic conditions using a variation in the design elements. The study is useful at the practical and policy level since it combines the economic module with the environmental impact to measure CO2 emissions.

Til dokument

Sammendrag

A greenhouse climate-crop yield model was adapted to include additional climate modification techniques suitable for enabling sustainable greenhouse management at high latitudes. Additions to the model were supplementary lighting, secondary heating and heat harvesting technologies. The model: 1) included the impact of different light sources on greenhouse air temperature and tomato production 2) included a secondary heating system 3) calculated the amount of harvested heat whilst lighting was used. The crop yield model was not modified but it was validated for growing tomato in a semi-closed greenhouse equipped with HPS lamps (top-lights) and LED (inter-lights) in Norway. The combined climate-yield model was validated with data from a commercial greenhouse in Norway. The results showed that the model was able to predict the air temperature with sufficient accuracy during the validation periods with Relative Root Mean Square Error <10%. Tomato yield was accurately simulated in the cases under investigation, yielding a final production difference between 0.7% and 4.3%. Lack of suitable data prevented validation of the heat harvest sub-model, but a scenario is presented calculating the maximum harvestable heat in an illuminated greenhouse. Given the cumulative energy used for heating, the total amount of heating pipe energy which could be fulfilled with the heat harvestable from the greenhouse air was around 50%. Given the overall results, the greenhouse climate(-crop yield) model modified and presented in this study is considered accurate enough to support decisions about investments at farm level and/or evaluate beforehand the possible consequences of environmental policies.

Sammendrag

Dagens produksjonsmetode av veksthusgrønnsaker gir betydelig utslipp av næringsstoffer. Det er en situasjon som er uønsket og kan føre til forurensing av nærmiljøet, bruk av for mye næringsstoffer og økonomisk tap for produsenter. Registreringer viser at avrenningsprosenter kan variere mellom 30 og 40 % i tomat og agurk. Tapet av næringsstoffer ble estimert. Det ble påvist at det er mulig å begrense mengde avrenningsvann ved å tilpasse vanningsteknikk. Men bruk av denne vanningsteknikken forutsetter at vanntilførselen er 100% nøyaktig. Avvik vil ha store konsekvenser for avling og/eller kvalitet av produktene og dermed for økonomien for den enkelte produsent, og er dermed enda ikke forsvarlig. Resirkulering av avrenningsvann er teknisk mulig. Det vil redusere avrenningen med tilnærmet 100%. Desinfeksjon av avrenningsvann er helt nødvendige for å unngå spredning av sykdommer. Det er god erfaring med gode teknikker fra utlandet, og teknikkene er beskrevet i rapporten. Resirkulering vil kreve en investering i bl.a. oppsamlingstanker, rensesystemer og en ny gjødselblander. Denne investeringen vil øke produksjonskostnader for gartnerier med et gjennomsnittsareal på 1000-3000 m2 med ca 25 %. Besparelsen av utgifter for gjødsling og vann er estimert på 0,10 til 0,15 nok/kg. Rapporten konkluderer at det er pr i dag for de fleste bedrifter ulønnsom å investere i et slikt vanningssystem.

Sammendrag

Fem nye mjøldoggtolerante sorter ble vurdert i forhold til målesorten "Aviance" i paraplykultur våren 2008. Resultatene viser at de nye sortene ikke er noe vesentlig bedre alternativ. "Aviance" anbefales fortsatt som hovedsort til vårplanting, mens "Shakira" fortsatt er hovedsort for sommer- og høstplanting i paraply.

Sammendrag

Fem nye mjøldoggtolerante sorter ble sammenlignet med målesorten "Rapides" i lyskultur med nedsenking og planting om våren. Resultatene viste at ingen av sortene var et klart bedre alternativ enn "Rapides".

Sammendrag

Fem nye mjøldoggtolerante sorter ble sammenlignet med målesorten "Rapides" i lyskultur med nedsenking og planting om høsten. Det ble ikke funnet forskjell i avling mellom sortene. Selv om det ble påvist forskjeller i agurkkvalitet, tidlighet og mjøldoggtoleranse, var ingen av sortene et klart bedre alternativ enn "Rapides".

Sammendrag

Veiledningsprøvinger i agurk høsten 2006 viste klare forskjeller mellom sortene både i avling, kvalitet og mjøldoggtoleranse. Fem nye mjøldoggtolerante sorter ble vurdert i forhold til målesorten "Aviance" i paraplykultur. Resultatene viser at de nye sortene har bedre holdbarhet og mjøldoggtoleranse enn "Aviance*. Når det vurderes både avling, kvalitet og mjøldoggtoleranse, er den nye sorten "Shakira" et bedre valg enn "Aviance

Sammendrag

Fire nye klasetomatsorter ble vurdert i forhold til målesorten "Cedrico". Resultatene viser at nye sorter med bedre smak også har noen negative egenskaper.

Sammendrag

Fire nye tomatsorter til løs plukking ble vurdert i forhold til målesortene "Cedrico" og "Espero". I årets prøving ble også smaksegenskapene testet. Resultatene viser at de nye sortene har flere gode, men desverre også mindre gode egenskaper.