Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

This report summarizes the status of biochar in forestry in the Nordic-Baltic countries today. Biochar is charred material formed by pyrolysis of organic materials. In addition to improving soil physical and chemical properties and plant growth, biochar is a promising negative emission technology for storing carbon (C) in soils. The report gives an overview of current and potential uses, production methods and facilities, legislation, current and future research as well as biochar properties and effects. Forests are both a source of feedstock for biochar production and a potential beneficiary for biochar use. Production is still limited in the Nordic-Baltic countries, but commercial production is on the rise and several enterprises are in the planning or start-up phase. In this report different biochar production technologies are described. As the (modern) use of biochar for agricultural and especially forestry purposes is relatively new, in many countries there are no specific legislation regulating its use. Sometimes the use of biochar is regulated through more general laws and regulations on e.g. fertilizers or soil amendment. However, both inside and outside EU several documents and standards exist, listing recommended physical and chemical limit values for biochar. So far, most biochar studies have been conducted on agricultural soils, though research in the forestry sector is starting to emerge. The first biochar field experiments in boreal forests support that wood biochar promotes tree growth. Also, studies on the use of biochar as an additive to the growing medium in tree nurseries show promising results. Because biochar C content is high, it is recalcitrant to decomposition, and application rates to soil can be high, biochar is a promising tool to enhance the C sequestration in boreal forests. However, available biomass and production costs may be barriers for the climate change mitigation potential of biochar. When it comes to effects on biodiversity, few field-based studies have been carried out. Some studies from the Nordic region show that biochar addition may affect microbial soil communities and vegetation, at least on a short time scale. There is clearly a need for more research on the effects of biochar in forestry in the Nordic-Baltic region. Long-term effects of biochar on e.g., forest growth, biodiversity, soil carbon and climate change mitigation potential should be studied in existing and new field experiments.

Til dokument

Sammendrag

Purpose: Laser diffraction (LD) for determination of particle size distribution (PSD) of the fine earth fraction appeared in the 1990s, partly substituting the Sieving and Sedimentation Method (SSM). Whereas previous comparison between the two methods predominantly encompasses agricultural soils, less attention has been given to forest soils, including pre-treatment requirements related to their highly variable contents of carbon and Alox+ Feox. In this small collaborative learning study we compared (1) national SSM results with one type/protocol of LD analysis (Coulter), (2) LD measurements performed on three different LD instruments / laboratories, and (3) the replication error for LD Coulter analysis of predominantly sandy and loamy forest soils. Methods: We used forest soil samples from Denmark, Norway and Lithuania and their respective national SSM protocols / results. LD analyses were performed on Malvern Mastersizer 2000, Sympatec HELOS version 1999, and Coulter LS230, located at University of Copenhagen, Aarhus University and Helsinki University, respectively. The protocols differed between laboratories, including the use of external ultrasonication prior to LD analysis. Results: The clay and silt fractions content (<20 μm) from the LD analysis were not comparable with SSM results, with differences ranging from −0.5 to 22.3 percentage points (pp) for clay. Preliminary results from loamy samples with spodic material suggested inconsistent effects of external ultrasonication to disperse aggregates. The comparison between the three LD instruments showed a range in the clay and silt fractions content of 1.9–5.3 and 6.2–8.1 pp, respectively. Differences may be related to the instruments, protocols, and content of a given particle size fraction. The replication error of the Coulter LD protocol was found to be <3 pp in sandy soils, but up to 10 pp in loamy soils. Conclusion: Differences in the clay fraction results partly affected the classification of soil types. The fast replication of the LD analysis enables more quality control of results. The pedological evaluation of non-silicate constituents and optional pre-treatment steps (e.g., soil organic matter or sesquioxides) remains the same for LD and SSM. For comparison of results, detailed descriptions of the analytical protocol including pre-treatments are needed irrespective of instrument and theoretical approach.