Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

Simple Summary: The fall armyworm (FAW), Spodoptera frugiperda has now become a pest of global importance. Its introduction and detection in Africa in 2016, and subsequent introduction and spread into Asia and Australia, has put several millions of food producers and maize farmers at risk. Not all pest management strategies are sustainable. Biological control with the use of parasitoid wasps is one of the durable and environmentally sound options. The present study was initiated to predict the habitats of high establishment potential of key parasitoids of FAW in South America, which might prove to be effective as classical biological control agents of FAW in regions where it is an invasive species under current and future climate scenarios. The prospective parasitoids are the following: Chelonus insularis, Cotesia marginiventris, Eiphosoma laphygmae, Telenomus remus and Trichogramma pretiosum. The results demonstrate overlapping habitat suitability areas of the pest and the parasitoids, suggesting promises for biological control options for the management of FAW under current and future climate scenarios. Abstract: The present study is the first modeling effort at a global scale to predict habitat suitability of fall armyworm (FAW), Spodoptera frugiperda and its key parasitoids, namely Chelonus insularis, Cotesia marginiventris, Eiphosoma laphygmae, Telenomus remus and Trichogramma pretiosum, to be considered for biological control. An adjusted procedure of a machine-learning algorithm, the maximum entropy (Maxent), was applied for the modeling experiments. Model predictions showed particularly high establishment potential of the five hymenopteran parasitoids in areas that are heavily affected by FAW (like the coastal belt of West Africa from Côte d’Ivoire (Ivory Coast) to Nigeria, the Congo basin to Eastern Africa, Eastern, Southern and Southeastern Asia and some portions of Eastern Australia) and those of potential invasion risks (western & southern Europe). These habitats can be priority sites for scaling FAW biocontrol efforts. In the context of global warming and the event of accidental FAW introduction, warmer parts of Europe are at high risk. The effect of winter on the survival and life cycle of the pest in Europe and other temperate regions of the world are discussed in this paper. Overall, the models provide pioneering information to guide decision making for biological-based medium and long-term management of FAW across the globe.

To document

Abstract

There are still uncertainties regarding the long-term impact of no-tillage farming practices on separate soil functions in the United Kingdom. This paper aimed to evaluate the chemical and physical processes in two different agricultural soils under no-tillage and conventional management practices to determine their impact on water related soil functions at field scale in the United Kingdom. The field-scale monitoring compares two neighboring farms with similar soil and topographic characteristics—one of the farms implemented no-tillage practices in 2013, while the second farm is under conventional soil management with moldboard plowing. Two soil types were evaluated under each farming practice: (1) a free-draining porous limestone, and (2) a lime-rich loamy soil with high silt and clay content. Field monitoring was undertaken over a two-year period and included nutrient analysis of surface and subsurface soil samples, bulk density, soil moisture, infiltration capacity, surface runoff, and analysis of phosphorus (P) and suspended solids in watercourses in close proximity to the test fields. The conversion to no-tillage changed the soil structure, leading to a higher bulk density and soil organic matter content and thereby increasing the soil moisture levels. These changes impacted the denitrification rates, reducing the soil nitrate (NO3) levels. The increased plant material cover under no-tillage increased the levels of soil phosphate (PO43–) and PO43– leaching. The extent to which soil functions were altered by farming practice was influenced by the soil type, with the free-draining porous limestone providing greater benefits under no-tillage in this study. The importance of including soils of different characteristics, texture, and mineralogy in the assessment and monitoring of farming practice is emphasized, and additionally the between field and in-field spatial variability (both across the field and with depth) highlighted the importance of a robust sampling strategy that encompasses a large enough sample to effectively reveal the impact of the farming practice.

To document

Abstract

Background: European canker, caused by Neonectria ditissima, is a disease of worldwide importance in apple production, yet knowledge about it is limited, highly regional and sometimes contradictory. This is an obstacle to successful disease management. Key aspects for Northern Europe are reviewed, based on research results from Northern Germany and Norway and on international literature data. Main topics: Trunk cankers developing on young trees within the frst 1–3 seasons of explanting can often be traced back to latent infections initiated in the nurseries. The most important nursery infection is a lateral canker on the main trunk of ‘knip’ trees, which are the standard tree type in Northern Europe. In strongly afected batches, up to 25% of trees have to be uprooted after the frst growing season due to such trunk cankers. The establishment and maintenance of healthy orchards requires clean nursery material, especially in the case of susceptible cultivars. In Northern Germany, infections within commercial orchards most often proceed through wounds caused by fruit picking or leaf fall in autumn, as shown by the appearance of cankers in the following spring and by the high efcacy of fungicide treatments at leaf fall. Ascospores, commonly thought to be relevant for long-distance spread of infections, are not released until the end of leaf fall even in wet autumn seasons in Northern Germany. Therefore, their role in the disease remains unclear. Strong nitrogen-induced vegetative growth favours apple canker. In feld trials conducted under conditions of current commercial practices, autumnal sprays with copper hydroxide or copper oxide were consistently more efcacious than copper oxychloride or captan in preventing new infections. Conclusions: Restricted fertilisation and other measures to curb excessive vegetative growth during the frst few years of an orchard, repeated canker pruning and well-timed treatments with efective fungicides in autumn are essential for IPM of apple canker. Nonetheless, canker remains capable of severely impairing the commercial success of susceptible cultivars in regions with wet climates even if all available measures are taken. This opens up long-term perspectives for the breeding of more resistant cultivars. Keywords: Ascospores, Canker pruning, Conidia, Copper hydroxide, Fertilisation, Fungicides, Latent infection, Neonectria ditissima, Nursery, Prohexadione calcium, Root pruning