Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

To document

Abstract

This study aims to understand the environmental factors, focusing on rain and fungal infection, affecting the assembly of glutenin polymers during grain maturation. Spring wheat was grown in the field and grains were sampled from 50% grain moisture until maturity. Grain moisture content, protein content, size of glutenin polymers, the presence of proteases, and the amount of DNA from common wheat pathogenic fungi were analysed. Rain influenced the rate of grain desiccation that occurred parallel to the rate of glutenin polymer assembly. Rapid desiccation contributed to faster glutenin polymer assembly than gradual desiccation. Severe reduction in the glutenin polymer size coincided with increased grain moisture due to rain. Furthermore, increased fungal DNA followed by presence of gluten-degrading proteases was observed in the grain after humid conditions. The presence of gluten-degrading proteases was presumably involved in reducing the size of glutenin polymers in grain. Our study gave new insight into how environmental conditions could be associated with the assembly of glutenin polymers during grain maturation. The results suggest that rain and/or fungal proteases play an important role in reducing the molecular size of glutenin polymers.

To document

Abstract

Light attenuation in photobioreactors is a major bottleneck in microalgal production. A possible strategy for artificial light-based microalgal production to deliver light deep inside the culture is through the periodical emission of high intensity light flashes (so-called flashing light). However, our results did not show improved photosynthetic rates compared to continuous light for dilute and concentrated Tetraselmis chui cultures exposed to flashing light with various repetition rates (frequencies 0.01 Hz–1 MHz), light-dark ratios (duty cycles: 0.001–0.7) or time-averaged light intensity (50–1000 μmol s−1 m−2). Likewise, flashing light applied to Chlorella stigmatophora and T. chui batch cultures could not enhance growth. However, we observed flashing light effects at different duty cycles and frequencies, depending on cell acclimation, culture concentration, and light intensity. In conclusion, artificial flashing light does not improve microalgal biomass productivities in photobioreactors, but low frequencies (f < 50 Hz) may be still used to improve light harvesting-associated biomolecules production.

Abstract

Soil respiration is an important ecosystem process that releases carbon dioxide into the atmosphere. While soil respiration can be measured continuously at high temporal resolutions, gaps in the dataset are inevitable, leading to uncertainties in carbon budget estimations. Therefore, robust methods used to fill the gaps are needed. The process-based non-linear least squares (NLS) regression is the most widely used gap-filling method, which utilizes the established relationship between the soil respiration and temperature. In addition to NLS, we also implemented three other methods based on: 1) artificial neural networks (ANN), driven by temperature and moisture measurements, 2) singular spectrum analysis (SSA), relying only on the time series itself, and 3) the expectation-maximization (EM) approach, referencing to parallel flux measurements in the spatial vicinity. Six soil respiration datasets (2017–2019) from two boreal forests were used for benchmarking. Artificial gaps were randomly introduced into the datasets and then filled using the four methods. The time-series-based methods, SSA and EM, showed higher accuracies than NLS and ANN in small gaps (<1 day). In larger gaps (15 days), the performance was similar among NLS, SSA and EM; however, ANN showed large errors in gaps that coincided with precipitation events. Compared to the observations, gap-filled data by SSA showed similar degree of variances and those filled by EM were associated with similar first-order autocorrelation coefficients. In contrast, data filled by both NLS and ANN exhibited lower variance and higher autocorrelation than the observations. For estimations of the annual soil respiration budget, NLS, SSA and EM resulted in errors between −3.7% and 5.8% given the budgets ranged from 463 to 1152 g C m−2 year−1, while ANN exhibited larger errors from −11.3 to 16.0%. Our study highlights the two time-series-based methods which showed great potential in gap-filling carbon flux data, especially when environmental variables are unavailable.

Abstract

MicroRNAs (miRNA, miR) are short non-protein coding RNA molecules that are involved in both the nuclear and the posttranscriptional regulation of gene expression. miRNAs are endogenous mediators of RNA-interference forming part of the epigenetic machinery and influence gene expression post-transcriptionally without affecting the DNA sequence. In Norway spruce, epigenetic memory is established in response to the temperature conditions during embryogenesis and it affects the timing of bud burst and bud set, vitally important adaptive traits for long-lived forest species. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. Developing Norway spruce embryos possesses a more complex small non-coding RNA (sRNA) structure than that reported for other somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature-dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic regulation, which in turn could provide a feedback process leading to the placement of epigenetic marks. Major features of miRNAs are related to their pleiotropic and synergistic actions, whereby a single miRNA can have several potential mRNA targets, and a single mRNA usually also has multiple miRNA binding sites. Moreover, miRNAs binding to a single mRNA often acts in a synergistic fashion. Fine-tuning of the miRNA production likely participates in both developmental regulation and epigenetic memory formation. Further functional and expression studies are necessary in order to elucidate the common miRNA-mediated regulatory mechanisms that underlie memory formation in plants. The use of artificial miRNAs, as well as overexpression and knockout/down of both miRNAs and their targets, will be the best techniques for determining the specific roles of individual miRNAs in memorizing the response to environmental stresses. In the present minireview, we illustrate the current knowledge regarding the epigenetics–miRNA regulatory networks aiming to provide biological insights into epigenetic memory formation in plants with a particular emphasis in spruce.

To document

Abstract

A large area of Estonian hemiboreal forest is recovering from clear-cut harvesting and changing carbon (C) balance of the stands. However, there is a lack of information about C- source/sink relationships during recovery of such stands. The eddy covariance technique was used to estimate C-status through net ecosystem exchange (NEE) of CO2 in two stands of different development stages located in southeast Estonia in 2014. Measured summertime (June–September) mean CO2 concentration was 337.75 ppm with mean NEE −1.72 µmol m−2 s−1. June NEE was −4.60 µmol m−2 s−1; July, August, and September NEE was −1.17, −0.77, and −0.25 µmol m−2 s−1, respectively. The two stands had similar patterns of CO2 exchange; measurement period temperature drove NEE. Our results show that after clear-cutting a 6-year-old forest ecosystem was a light C-sink and 8-year-old young stand demonstrated a stronger C-sink status during the measurement period.

To document

Abstract

The aim of the present work was to investigate the potential of Porphyra sp. as an alternative source of protein to soybean meal in diets for sheep. Our experimental treatments included a control diet (CON) based on grass silage and crushed oats and three diets containing protein supplements, clover silage (CLO), soybean meal (SOY) or Porphyra sp. (POR) to increase dietary crude protein concentrations. We studied its effects on rumen fermentation, growth rate and methane emissions. Ruminal fermentation characteristics, kinetics of gas production and methane production were studied in vitro by using batch cultures inoculated with rumen inoculum from sheep. There were no differences among diets in total volatile fatty acids (VFA) production or in the VFA profile in vitro. Across treatments, we measured no differences in methane production either in vitro or in vivo, and we saw no noticeable antimethanogenic effect of Porphyra sp. The present in vivo trial with lambs showed no differences in average daily weight gain when fed diets including Porphyra sp. or soybean meal diets (250 and 254 g/d, respectively). We conclude that Porphyra sp. has a protein value similar to high-quality protein sources like soybean meal.