To document

Abstract

The emergence of antibiotic-resistant pathogens has caused a serious worldwide problem in infection treatment in recent years. One of the pathogens is methicillin-resistant Staphylococcus aureus (MRSA), which is a major cause of skin and soft tissue infections. Alternative strategies and novel sources of antimicrobials to solve antibiotic resistance problems are urgently needed. In this study, we explored the potential of two broad-spectrum bacteriocins, garvicin KS and micrococcin P1, in skin infection treatments. The two bacteriocins acted synergistically with each other and with penicillin G in killing MRSA in vitro. The MICs of the antimicrobials in the three-component mixture were 40 ng/ml for micrococcin P1 and 2 μg/ml for garvicin KS and penicillin G, which were 62, 16, and at least 1,250 times lower than their MICs when assessed individually. To assess its therapeutic potential further, we challenged the three-component formulation in a murine skin infection model with the multidrug-resistant luciferase-tagged MRSA Xen31, a strain derived from the clinical isolate S. aureus ATCC 33591. Using the tagged-luciferase activity as a reporter for the presence of Xen31 in wounds, we demonstrated that the three-component formulation was efficient in eradicating the pathogen from treated wounds. Furthermore, compared to Fucidin cream, which is an antibiotic commonly used in skin infection treatments, our formulation was also superior in terms of preventing resistance development.

Abstract

Plants are exposed to various pathogens in their environment and have developed immune systems with multiple defense layers to prevent infections. However, often pathogens overcome these resistance barriers, infect plants and cause disease. Pathogens that cause diseases on economically important crop plants incur huge losses to the agriculture industry. For example, the 2016 outbreak of strawberry grey mold (Botrytis cinerea) in Norway caused up to 95% crop losses. Such outbreaks underline the importance of developing novel and sustainable tools to combat plant diseases, for example by increasing the plants’ natural disease resistance. Priming plant defenses using chemical elicitors may enhance resistance against multiple pathogens. Such an approach may reduce the use of chemical fungicides and pesticides that often select for resistant strains of pests and pathogens. My presentation will focus on the effectiveness of different chemical agents to prime woodland strawberry (Fragaria vesca) defenses against the necrotroph B. cinerea. We have identified several genes that seem to play a role in disease resistance in strawberry and associated epigenetic memory mechanisms. Our results point out new management avenues for more sustainable crop protection schemes.

Abstract

Plants are exposed to various pathogens in their environment and have developed immune systems with multiple layers of defence to fight-back. However, often pathogens overcome the resistance barriers, infect the plants to cause the disease. Pathogens that cause diseases on economically important crop plants like strawberry incur huge losses to the agriculture industry. For example, The 2016 outbreak of strawberry grey mould (Botrytis cinerea) in Norway caused up to 95% crop losses. Outbreaks like this underline the importance of developing novel and sustainable tools to combat plant diseases, for example by increasing the plants’ natural disease resistance. Priming plant defences using chemical elicitors may be effective in providing the enhanced resistance against multiple pathogens. We have used β-aminobutyric acid (BABA) as a chemical priming agent to induce resistance in Fragaria vesca against Botrytis cinerea. Effects of BABA on disease progression and defence responses of Fragaria are being characterized using molecular tools like RNAseq, RT-PCR and ChIP. As priming chemicals may induce an epigenetic memory in treated plants, we also plan to study the histone methylation patterns in primed plants and the genes that are regulated. Our long-term aim is to understand the duration of the epigenetic memory and its cross-generational transmission to the progeny in Fragaria. Our results will help guide various crop protection strategies in addition to providing new insights to develop novel tools for plant disease management.

To document

Abstract

Plant research and breeding has a long and successful history in the Scandinavian countries, Denmark, Finland, Norway and Sweden. Researchers in the region have been early in adopting plant gene technologies as they developed. This review gives a background, as well as discuss the current and future progress of plant gene technology in these four countries. Country-specific details of the regulation of genetically modified plants are described, as well as similarities and differences in the approach to regulation of novel genome-editing techniques. Also, the development of a sustainable bioeconomy may encompass the application of plant gene technology and we discuss whether or not this is reflected in current associated national strategies. In addition, country-specific information about the opinion of the public and other stakeholders on plant gene technology is presented, together with a country-wise political comparison and a discussion of the potential reciprocal influence between public opinion and the political process of policy development. The Scandinavian region is unique in several aspects, such as climate and certain agriculturally related regulations, and at the same time the region is vulnerable to changes in plant breeding investments due to the relatively small market sizes. It is therefore important to discuss the role and regulation of innovative solutions in Scandinavian plant research and breeding.