Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

Abstract

Global Forest Watch (GFW) provides a global map of annual forest cover loss (FCL) produced from Landsat imagery, offering a potentially powerful tool for monitoring changes in forest cover. In managed forests, FCL primarily provides information on commercial harvesting. A semi-autonomous method for providing data on the location and attributes of harvested sites at a landscape level was developed which could significantly improve the basis for catchment management, including risk mitigation. FCL in combination with aerial images was used for detecting and characterising harvested sites in a 1607 km2 mountainous boreal forest catchment in south-central Norway. Firstly, the forest cover loss map was enhanced (FCLE) by removing small isolated forest cover loss patches that had a high probability of representing commission errors. The FCLE map was then used to locate and assess sites representing annual harvesting activity over a 17-year period. Despite an overall accuracy of >98%, a kappa of 0.66 suggested only a moderate quality for detecting harvested sites. While errors of commission were negligible, errors of omission were more considerable and at least partially attributed to the presence of residual seed trees on the site after harvesting. The systematic analysis of harvested sites against aerial images showed a detection rate of 94%, but the area of the individual harvested site was underestimated by 29% on average. None of the site attributes tested, including slope, area, altitude, or site shape index, had any effect on the accuracy of the area estimate. The annual harvest estimate was 0.6% (standard error 12%) of the productive forest area. On average, 96% of the harvest was carried out on flat to moderately steep terrain (<40% slope), 3% on steep terrain (40% to 60% slope), and 1% on very steep terrain (>60% slope). The mean area of FCLE within each slope category was 1.7 ha, 0.9 ha, and 0.5 ha, respectively. The mean FCLE area increased from 1.0 ha to 3.2 ha on flat to moderate terrain over the studied period, while the frequency of harvesting increased from 249 to 495 sites per year. On the steep terrain, 35% of the harvesting was done with cable yarding, and 62% with harvester-forwarder systems. On the very steep terrain (>60% slope), 88% of the area was harvested using cable yarding technology while harvesters and forwarders were used on 12% of the area. Overall, FCL proved to be a useful dataset for the purpose of assessing harvesting activity under the given conditions.

To document See dataset

Abstract

Coastal erosion is an issue of major concern for coastal managers and is expected to increase in magnitude and severity due to global climate change. This paper analyzes the potential consequences of climate change on coastal erosion (e.g., impacts on beaches, wetlands and protected areas) by applying a Regional Risk Assessment (RRA) methodology to the North Adriatic (NA) coast of Italy. The approach employs hazard scenarios from a multi-model chain in order to project the spatial and temporal patterns of relevant coastal erosion stressors (i.e., increases in mean sea-level, changes in wave height and variations in the sediment mobility at the sea bottom) under the A1B climate change scenario. Site-specific environmental and socio-economic indicators (e.g., vegetation cover, geomorphology, population) and hazard metrics are then aggregated by means of Multi-Criteria Decision Analysis (MCDA) with the aim to provide an example of exposure, susceptibility, risk and damage maps for the NA region. Among seasonal exposure maps winter and autumn depict the worse situation in 2070–2100, and locally around the Po river delta. Risk maps highlight that the receptors at higher risk are beaches, wetlands and river mouths. The work presents the results of the RRA tested in the NA region, discussing how spatial risk mapping can be used to establish relative priorities for intervention, to identify hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies.

Abstract

Repeat photography is an efficient method for documenting long-term landscape changes. So far, the usage of repeat photographs for quantitative analyses is limited to approaches based on manual classification. In this paper, we demonstrate the application of a convolutional neural network (CNN) for the automatic detection and classification of woody regrowth vegetation in repeat landscape photographs. We also tested if the classification results based on the automatic approach can be used for quantifying changes in woody vegetation cover between image pairs. The CNN was trained with 50 × 50 pixel tiles of woody vegetation and non-woody vegetation. We then tested the classifier on 17 pairs of repeat photographs to assess the model performance on unseen data. Results show that the CNN performed well in differentiating woody vegetation from non-woody vegetation (accuracy = 87.7%), but accuracy varied strongly between individual images. The very similar appearance of woody vegetation and herbaceous species in photographs made this a much more challenging task compared to the classification of vegetation as a single class (accuracy = 95.2%). In this regard, image quality was identified as one important factor influencing classification accuracy. Although the automatic classification provided good individual results on most of the 34 test photographs, change statistics based on the automatic approach deviated from actual changes. Nevertheless, the automatic approach was capable of identifying clear trends in increasing or decreasing woody vegetation in repeat photographs. Generally, the use of repeat photography in landscape monitoring represents a significant added value to other quantitative data retrieved from remote sensing and field measurements. Moreover, these photographs are able to raise awareness on landscape change among policy makers and public as well as they provide clear feedback on the effects of land management.

To document

Abstract

Auxin is a molecule, which controls many aspects of plant development through both transcriptional and non-transcriptional signaling responses. AUXIN BINDING PROTEIN1 (ABP1) is a putative receptor for rapid non-transcriptional auxin-induced changes in plasma membrane depolarization and endocytosis rates. However, the mechanism of ABP1-mediated signaling is poorly understood. Here we show that membrane depolarization and endocytosis inhibition are ABP1-independent responses and that auxin-induced plasma membrane depolarization is instead dependent on the auxin influx carrier AUX1. AUX1 was itself not involved in the regulation of endocytosis. Auxin-dependent depolarization of the plasma membrane was also modulated by the auxin efflux carrier PIN2. These data establish a new connection between auxin transport and non-transcriptional auxin signaling.