Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

To document

Abstract

Marine macrophytes are the foundation of algal forests and seagrass meadows–some of the most productive and diverse coastal marine ecosystems on the planet. These ecosystems provide nursery grounds and food for fish and invertebrates, coastline protection from erosion, carbon sequestration, and nutrient fixation. For marine macrophytes, temperature is generally the most important range limiting factor, and ocean warming is considered the most severe threat among global climate change factors. Ocean warming induced losses of dominant macrophytes along their equatorial range edges, as well as range extensions into polar regions, are predicted and already documented. While adaptive evolution based on genetic change is considered too slow to keep pace with the increasing rate of anthropogenic environmental changes, rapid adaptation may come about through a set of non-genetic mechanisms involving the functional composition of the associated microbiome, as well as epigenetic modification of the genome and its regulatory effect on gene expression and the activity of transposable elements. While research in terrestrial plants demonstrates that the integration of non-genetic mechanisms provide a more holistic picture of a species’ evolutionary potential, research in marine systems is lagging behind. Here, we aim to review the potential of marine macrophytes to acclimatize and adapt to major climate change effects via intraspecific variation at the genetic, epigenetic, and microbiome levels. All three levels create phenotypic variation that may either enhance fitness within individuals (plasticity) or be subject to selection and ultimately, adaptation. We review three of the most important phenotypic variations in a climate change context, including physiological variation, variation in propagation success, and in herbivore resistance. Integrating different levels of plasticity, and adaptability into ecological models will allow to obtain a more holistic understanding of trait variation and a realistic assessment of the future performance and distribution of marine macrophytes. Such multi-disciplinary approach that integrates various levels of intraspecific variation, and their effect on phenotypic and physiological variation, is of crucial importance for the effective management and conservation of seagrasses and macroalgae under climate change.

To document

Abstract

Ten elite maize inbred lines were selected based on all over per se performance and gray leaf spot disease reaction. Crosses were made in a 10×10 half-diallel mating design to produce 45 F1 single cross hybrids. The experiment was conducted at Bako national maize research center in 2015 and evaluation of the crosses were made at Bako and Jimma research centers in 2016 by using alpha lattice design with three replications including three commercial checks. All the necessary yield, agronomic and GLS disease data were recorded. In all the studied traits highly significant genotypic differences were observed indicating the existence of genetic variability among the crosses. Analysis of variance for the combining ability indicated GCA and SCA mean squares were significant at (P < 0.001) for all traits except for anthesis-silking interval, ear per plant, ear diameter, lesion length and width. The ratios of GCA/SCA variances for agronomic parameters and all disease parameters were greater than unity except for that of first disease appearance implying the predominance of additive gene actions. Among all inbred lines, P1, P4, P7, P8 and P9 were identified as desirable sources of resistant genes for GLS disease resistance with positive days of first disease appearance and negative disease incidence, severity and AUDPC values for GCA effects. From the analysis of epidemiological data and disease progress curves the Logistic model (R2=96.5) better described the disease progress curves than the Gompertz model (R2=92.5) indicating the presence of delayance in epidemics and the inflection point of the GLS. P1, P7 and P8 were identified as a good general combiners for yield, yield related traits and GLS disease parameters. Thus, these parents were recommended to be used in breeding programs with a purpose of developing high yielder and GLS resistant single cross hybrids. In conclusion this study identified potential high yielding and GLS resistant single cross hybrids (CML-395/CML-383, CML-395/Sc-22, CML-395/CML-197 and CML-383/CML-197). Therefore, it is recommended that these hybrids can be used for direct production where this disease is the most prevalent and/or for further breeding programs in generating novel hybrids for future use.

To document

Abstract

Most horticultural crops are attacked by more than one insect pest. As broad-spectrum chemical control options are becoming increasingly restricted, there is a need to develop novel control methods. Semiochemical attrac- tants are available for three important horticultural pests, strawberry blossom weevil, Anthonomus rubi Herbst (Coleoptera: Curculionidae), European tarnished plant bug, Lygus rugulipennis Poppius (Hemiptera: Miridae) and raspberry beetle, Byturus tomentosus deGeer (Coleoptera: Byturidae). Traps targeting more than one pest species would be more practical and economical for both monitoring and mass trapping than traps for single-species. In this study we aimed to (1) improve the effectiveness of existing traps for insect pests in strawberry and raspberry crops by increasing catches of each species, and (2) test if attractants for two unrelated pest species could be combined to capture both in the same trap without decreasing the total catches. Field tests were carried out in four European countries and different combinations of semiochemicals were compared. A volatile from straw- berry flowers, 1,4 dimethoxybenzene (DMB), increased the attractiveness of the aggregation pheromone to both sexes of A. rubi. The host-plant volatile, phenylacetaldehyde (PAA), increased the attraction of female L. rugu- lipennis to the sex pheromone, and, in strawberry, there was some evidence that adding DMB increased catches further. Traps baited with the aggregation pheromone of A. rubi, DMB, the sex pheromone of L. rugulipennis and PAA attracted both target species to the same trap with no significant difference in catches compared to those single-species traps. In raspberry, catches in traps baited with a combination of A. rubi aggregation pheromone, DMB and the commercially available lure for B. tomentosus, based on raspberry flower volatiles, were similar to those in single-species traps. In both crops the efficiency of the traps still needs improvement, but the multi- species traps are adequate for monitoring and should not lead to confusion for the user as the target species are easy to distinguish from each other.

To document

Abstract

The aim of the investigation was to assess and compare the environmental limits for growth cessation and floralinitiation in a range of new and established biennial-fruiting red raspberry (Rubus idaeus L.) cultivars of diverseorigin under phytotron and field conditions. The results confirmed that growth cessation and floral initiation inbiennial-fruiting red raspberry are jointly controlled by the interaction of low temperature and short days (SD).When transferred from non-inductive high temperature and long day (LD) conditions to naturally decreasingautumn daylengths at varying phytotron temperatures on 18 August, growth immediately levelled off and ceasedcompletely within 2 weeks in all cultivars at 9 °C. Serial dissections of lateral buds revealed that floral initiationsimultaneously took place. At 15 °C on the other hand, the plants continued growing and remained vegetativeuntil around 15 September when the daylength had decreased to approximately 13 h. The change to 9 °C resultedin an immediate but short-lasting floral induction response that did not bring about initiation in buds situatednear the base of the canes, as was the case at 15 °C. At 18 °C, marginal floral induction took place only in thecultivars ‘Glen Ample’, ‘Balder’ and ‘Vene’, even at photoperiods down to 10 h, whereas at 21 °C, all cultivarsgrew vegetatively regardless of daylength conditions. However, exceptions were some plants of ‘Vene’ and‘Anitra’ that initiated terminal flowers at 18 and 21 °C and flowered directly without chilling (so-called tipflowering). Although some cultivars of Northern origin ceased growing and initiated floral primordia somewhatearlier (at longer photoperiods) than those of more southerly origin, the differences were relatively minor andnot consistent (no latitudinal cline). Results obtained in the field under decreasing autumn temperature anddaylength conditions agreed closely with the results in the phytotron. We therefore conclude that results ob-tained with raspberry in properly controlled daylight phytotron experiments are generally applicable to fieldconditions.