Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2024
Forfattere
Ville Erling Sipinen Monica Sanden Johanna Eva Bodin Nur Duale Anne-Marthe Ganes Jevnaker Kristian Prydz Volha Shapaval Tage ThorstensenSammendrag
The Norwegian Committee for Food and Environment (VKM) has performed a preliminary assessment of an application for authorization for the genetically modified maize event DP202216 in the EAA. The scope of the application includes all uses of maize DP202216 and sub-combinations independently of their origin equivalent to the uses of any other maize grain and forage. The assessment was performed in connection with EFSAs (European Food Safety Authorities) public hearing of application EFSA-GMO-NL-2019-159, on request from the Norwegian Food Safety Authority and the Norwegian Environment Agency. The assessment of maize DP202216 is based on information provided by the applicant in the application EFSA-GMO-NL-2019-159, and relevant peer-reviewed scientific literature. Maize DP202216 has the potential to enhanced grain yield, and provides tolerance to glufosinate-ammonium herbicides. Authorisation process for genetically modified organisms Through the EEA Agreement, the EU Directive 2001/18/EC on deliberate release into the environment of genetically modified organisms is implemented in Norwegian law. Norway is therefore affiliated with the GMO authorisation process in the EU. In the EU, both GMOs and derived products are regulated by the Directive and Regulation 1829/2003/EC. The Regulation concerns genetically modified food and feed and is currently not a part of the EEA Agreement. In preparation for a legal implementation of the Regulation in Norwegian law, Norway follows the EU proceedings for GMO applications. When a company seeks approval of a genetically modified organism, the application is submitted to the national competent authority of an EU Member State, which forwards the application to EFSA. EFSA then submits the application for a public hearing across all EEA countries. VKM conducts its own review of the application and sends its comments to EFSA. EFSA then completes their scientific opinion based on information from the applicant, comments from EEA member countries and independent literature. The scientific opinion is then issued to the European Commission. VKM submitted their comments on application EFSA-GMO-NL-2019-159 to EFSA before the deadline January 3, 2020.
Forfattere
Monica Sanden Johanna Eva Bodin Nur Duale Anne-Marthe Ganes Jevnaker Kristian Prydz Volha Shapaval Ville Erling Sipinen Tage ThorstensenSammendrag
The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of the genetically modified maize DP915635 for food and feed uses, import and processing in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. (link) Maize DP915635 DP915635 is a genetically modified maize that expresses the insecticidal protein IPD079Ea for control of corn rootworm pests, the enzyme phosphinothricin acetyltransferase (PAT) for tolerance to glufosinate-ammonium herbicides, and the enzyme phosphomannose isomerase (PMI) that was used as a selectable marker during development. The scientific documentation provided in the application for DP915635 maize is adequate for risk assessment, and in accordance with EFSA guidance on risk assessment of genetically modified plants for use in food or feed. The VKM GMO panel does not consider the introduced modifications in DP915635 maize to imply potential specific health or environmental risks in Norway, compared to EU-countries. The EFSA scientific Opinion is adequate also for Norwegian conditions. Therefore, a full risk assessment of DP915635 maize was not performed by the VKM GMO Panel. About the assignment: In stage 1, VKM shall assess the health and environmental risks of the genetically modified organism and derived products in connection with the EFSA scientific hearing of GMO applications. VKM shall review the scientific documentation that the applicant has submitted and possibly provide comments to EFSA. VKM must also consider: i) whether there are specific Norwegian conditions that could give other risks in Norway than those mentioned in the application, ii) whether the Norwegian diet presents a different health risk for the Norwegian population should the GMO be approved, compared to the European population, and iii) risks associated with co-existence with conventional and/or ecologic production of plants for GMOs seeking approval for cultivation. Relevant measures to ensure co-existence must also be considered. In stage 2, VKM shall assess whether comments from Norway have been satisfactorily answered by EFSA. In addition, VKM shall assess whether comments from other countries imply need for further follow-up. If EFSAs response to Norwegian comments is not satisfactory, or comments by other countries imply the need for further follow-up, VKM shall in stage 3 perform a risk assessment of these conditions, including conditions specific to Norway.
Forfattere
Lawrence Richard Kirkendall Kyrre Linné Kausrud Martin Malmstrøm Paul Ragnar Berg Anders Bryn Kjetil Hindar Johanna Järnegren Anders Nielsen Erlend Birkeland Nilsen Brett Kevin Sandercock Eva Bonsak Thorstad Gaute VelleSammendrag
The Norwegian Environment Agency has asked VKM to evaluate the risks to biodiversity associated with the import of two species of leeches to Norway, Hirudo medicinalis and H. verbana (so-called medicinal leeches). In addition, they ask that the project group suggest mitigating measures that could reduce any potential risks, should import of the two species be granted. Background Bloodsucking leeches have been employed by humans for millennia. The two species Hirudo medicinalis and H. verbana have dominated the trade in medicinal leeches in Europe. Overcollection combined with loss or degradation of freshwater habitats led to a precipitous decline in European populations by the 1800s and led to a corresponding increase in imports from Turkey, North Africa, Russia and the Middle East. By the turn of the 19th century, the demand for live leeches in Europe had tapered off as contemporary medicine developed, only to have a small resurgence over the last decades as live leeches became recognized as useful for a variety of medical and cosmetic procedures, and to be the source of bioactive molecules of interest to medical researchers. As traditional medicine in Asia also uses a variety of leech products, there is a robust global market for live leeches and leech derivatives that is being met mostly by leech aquaculture, where the live leech trade seems dominated by H. verbana. There is increasing interest in commercializing production and sale of three similar leech species, H. orientalis from Central Asia, H. sulukii from a small region in Turkey, and H. troctina from North Africa. Hirudo medicinalis has been used medicinally in Norway since at least the Middle Ages when they were used by barber-surgeons for bloodletting. Leeches have been dispensed by apothecaries up until the end of the 1950s. Phylogeographic studies have treated the species as native to southern Norway and the Norwegian Biodiversity Information Centre has numerous records of H. medicinalis, with recent records primarily from the eastern coast of southern Norway. The Norwegian Red List for Species categorizes H. medicinalis as being of Least Concern in Norway. Hirudo verbana naturally occurs in southern Europe and has not been observed in Scandinavia so far (see map in Figure 2). Methods for the risk assessment VKM established a small working group with expertise in invertebrates and risk assessment. Our group combed the scientific literature and relevant websites for information on the taxonomy, natural history, ecology, and medical uses of medicinal leeches broadly and H. medicinalis and H. verbana specifically. The project group contacted major leech providers in Europe and North America to learn more about leech production and sale. Using the EICAT (Environmental Impact Classification for Alien Taxa) system developed by the IUCN, The project group identified those mechanisms (“hazards”) through which these two species could affect native biodiversity in Norway should imported specimens become established in Norwegian nature, and characterized the risk related to each of these hazards. The project group then conducted a semi-quantitative risk assessment for the species according to four categories: Low, Medium, Possibly high, and High risk. Hazards: how likely, how impactful, and overall risks In our report, VKM regard H. medicinalis as a native species, since it is so treated by Hirudo experts and is widespread in Norway. The project group regards H. verbana as non-native to Norway. The potential hazards from the EICAT system that could be associated with introducing one or both species include predation and parasitism, competition, disease transmission, and hybridization. ................................ .................................... Conclusions VKM concludes that the overall risk to biodiversity in Norway from importing live H. medicinalis and H. verbana is low.
Forfattere
Gaute Velle Paul Ragnar Berg Johanna Järnegren Martin Malmstrøm Anders Bryn Kjetil Hindar Lawrence R. Kirkendall Kyrre Linné Kausrud Erlend Birkeland Nilsen Brett Kevin Sandercock Eva Bonsak Thorstad Anders NielsenSammendrag
The Norwegian Environment Agency asked VKM to evaluate the risks to biodiversity associated with the importation of eight species of live crabs intended for human consumption. Background Invasive crab species represent a significant threat to biodiversity globally due to their omnivory, adaptability to diverse habitats, high reproductive output, and aggressive behaviour. The Norwegian Environment Agency has raised concerns about the potential ecological risks posed by the import of live crabs to Norway intended for human consumption. This report provides a risk assessment of eight species of crabs that could have negative effects on native biodiversity. The species include Chinese mitten crab (Eriocheir sinensis), Japanese mitten crab (E. japonica), blue crab (Callinectes sapidus), Atlantic rock crab (Cancer irroratus), Asian paddle crab (Charybdis japonica), common moon crab (Matuta victor), African blue swimming crab (Portunus segnis), and Harris mud crab (Rhithropanopeus harrisii). Three of the assessed species were recently confiscated at Norway's border. This suggests a market demand that could increase the frequency of introductions to Norway. Methods VKM established a working group with expertise in invertebrates and risk assessment. The group searched scientific literature for information on the taxonomy, natural history, invasiveness, and ecology for each crab species. If scientific literature was lacking, supplemental google searches allowed for a broader understanding of species with limited research or on the use and transportation of live crabs as food. The assessment utilized the EICAT framework (Environmental Impact Classification for Alien Taxa) to identify potential mechanisms by which each species could harm native biodiversity, should imported specimens become established in Norwegian nature. Key mechanisms include competition, predation, pathogen transmission, and hybridization. The relevant mechanisms were analysed for each species by rating the potential magnitude of impact on biodiversity from minimal to massive. The likelihood of each impact was assessed from very unlikely to very likely. A combination of magnitude of impact and likelihood resulted in final risk levels ranging from low and medium to possibly high and high. Confidence levels for each assessment were also categorized as low, medium, or high based on expert opinion. Results The potential hazards evaluated under the EICAT framework include competition, predation, and transmission of disease for all species, grazing for four species and structural impacts on the ecosystem for three species. The conditions required for crabs imported live for human consumption to reach a natural ecosystem in Norway include a commercial demand for crabs, survival during transport and handling, and the possibility of release or escape. If these conditions for reaching a natural ecosystem are met, the species must then be capable of establishment in the new ecosystem. There are several examples of species imported live for human consumption becoming established in the wild, most likely due to intentional release. The risk assessments indicate varied levels of risk across the five hazards. Competition from E. sinensis or E. japonica was assessed to pose a high risk, while competition from C. sapidus, C. irroratus, M. victor, P. segnis, or R. harrisii was assessed to pose a medium risk. Predation by E. sinensis or E. japonica was assessed to pose a high risk and predation from R. harrisii, C. sapidus, C. irroratus, M. victor, or P. segnis was assessed to pose a medium risk. Transmission of disease from either E. sinensis or E. japonica was assessed to pose a high risk, while there was a possibly high risk of disease transmission from C. irroratus. The diseases of highest concern include the crayfish plague (Aphanomyces astaci) and gaffkaemia (Aerococcus viridans var. homari). Finally, there was a moderate risk of ......
Forfattere
Debojyoti Chakraborty Albert Ciceu Dalibor Ballian Marta Benito Garzón Andreas Bolte Gregor Bozic Rafael Buchacher Jaroslav Čepl Eva Cremer Alexis Ducousso Julian Gaviria Jan Peter George André Hardtke Mladen Ivankovic Marcin Klisz Jan Kowalczyk Antoine Kremer Milan Lstibůrek Roman Longauer Georgeta Mihai László Nagy Krasimira Petkova Emil Popov Randolf Schirmer Tore Skrøppa Thomas Solvin Arne Steffenrem Jan Stejskal Srdjan Stojnic Katharina Volmer Silvio SchuelerSammendrag
Climate change threatens the role of European forests as a long-term carbon sink. Assisted migration aims to increase the resilience of forest tree populations to climate change, using species-specific climatic limits and local adaptations through transferring seed provenances. We modelled assisted migration scenarios for seven main European tree species and analysed the effects of species and seed provenance selection, accounting for environmental and genetic variations, on the annual above-ground carbon sink of regrowing juvenile forests. To increase forest resilience, coniferous trees need to be replaced by deciduous species over large parts of their distribution. If local seed provenances are used, this would result in a decrease of the current carbon sink (40 TgC yr−1) by 34–41% by 2061–2080. However, if seed provenances adapted to future climates are used, current sinks could be maintained or even increased to 48–60 TgC yr−1.
Forfattere
Rylee Isitt Andrew M. Liebhold Rebecca M. Turner Andrea Battisti Cleo Bertelsmeier Rachael Blake Eckehard G. Brockerhoff Stephen B. Heard Paal Krokene Bjørn Økland Helen F. Nahrung Davide Rassati Alain Roques Takehiko Yamanaka Deepa S. PureswaranSammendrag
The geographical exchange of non-native species can be highly asymmetrical, with some world regions donating or receiving more species than others. Several hypotheses have been proposed to explain such asymmetries, including differences in propagule pressure, source species (invader) pools, environmental features in recipient regions, or biological traits of invaders. We quantified spatiotemporal patterns in the exchange of non-native insects between Europe, North America, and Australasia, and then tested possible explanations for these patterns based on regional trade (import values) and model estimates of invader pool sizes. Europe was the dominant donor of non-native insect species between the three regions, with most of this asymmetry arising prior to 1950. This could not be explained by differences in import values (1827–2014), nor were there substantial differences in the sizes of modelled invader pools. Based on additional evidence from literature, we propose that patterns of historical plant introductions may explain these asymmetries, but this possibility requires further study.
Forfattere
Palingamoorthy Gnanamoorthy Junbin Zhao Abhishek Chakraborty Pramit Kumar Deb Burman Yaoliang Chen Linjie Jiao Jing Zhang Yaqi Liu Sigamani Sivaraj Yiping Zhang Qinghai SongSammendrag
Study region: The Ailaoshan National Nature Reserve forest is a mountainous water catchment area for the Lancang River basin and a subtropical ecological conservation area in southwest China. Study focus: The study aimed to understand how water fluxes in a subtropical forest responds to extreme weather disturbances and their recoveries in the post-damage years. We used eddy covariance data (2010–2019) to investigate the evapotranspiration (ET), transpiration (T), evaporation (E), and canopy conductance (Gc) before and after an extreme snow event in 2015. New Hydrological Insights: In the snow damage year, the leaf area index (LAI) decreased by 49 % compared to the pre-damage levels. The severe vegetation damage caused a significant decrease in ET, T, E, and Gc by 35 %, 36 %, 23 %, and 33 %, respectively, compared to the pre-damage levels. T returned to its pre-damage level in 2016, one year after the snow damage. In contrast, LAI, ET, E and Gc recovered to their pre-damage levels in 2018, four years after the initial damage. Reduced ET caused a strong positive RFET, which diminished forest evaporative cooling and resilience. Our results suggest that the delayed E recovery enables water reserves in the ecosystems to be used through T to support rapid understory vegetation growth. This mechanism plays critical in bolstering ecosystem resilience as it facilitates swift recovery following disturbances in subtropical forests.
Forfattere
Binbin Xiang Maciej Wielgosz Theodora Kontogianni Torben Peters Stefano Puliti Rasmus Astrup Konrad SchindlerSammendrag
Detailed forest inventories are critical for sustainable and flexible management of forest resources, to conserve various ecosystem services. Modern airborne laser scanners deliver high-density point clouds with great potential for fine-scale forest inventory and analysis, but automatically partitioning those point clouds into meaningful entities like individual trees or tree components remains a challenge. The present study aims to fill this gap and introduces a deep learning framework, termed ForAINet, that is able to perform such a segmentation across diverse forest types and geographic regions. From the segmented data, we then derive relevant biophysical parameters of individual trees as well as stands. The system has been tested on FOR-Instance, a dataset of point clouds that have been acquired in five different countries using surveying drones. The segmentation back-end achieves over 85% F-score for individual trees, respectively over 73% mean IoU across five semantic categories: ground, low vegetation, stems, live branches and dead branches. Building on the segmentation results our pipeline then densely calculates biophysical features of each individual tree (height, crown diameter, crown volume, DBH, and location) and properties per stand (digital terrain model and stand density). Especially crown-related features are in most cases retrieved with high accuracy, whereas the estimates for DBH and location are less reliable, due to the airborne scanning setup.
Sammendrag
No abstract has been registered
Sammendrag
Winter storage of seedlings in freezers reduces the amount of heat sum available for growth in the following growing season compared to seedlings stored outdoors. To test the effects of a reduced growing period on the autumn frost hardiness of the six species most used in Icelandic afforestation, seedlings were stored outdoors or in a freezer during winter. In spring, the seedlings were planted on 24 May, 7 June, 21 June, and 5 July, and the frost hardiness of all treatments was tested on 12 and 26 September. In general, the probability of freezing damage increased with a later planting date, with outdoor-stored seedlings having the lowest probability of damage. The timing of frost events was of great importance; the later the freezing date, the less damage was observed. Growth cessation occurred at different times for each species, and they responded differently to the reduced heat sum. Lodgepole pine and birch accumulated the most frost hardiness in September. Sitka spruce had less autumn frost hardiness than Lutz spruce. Hybrid larch accumulated less frost hardiness than Russian larch and was most sensitive to the reduced heat sum. The results can be used to determine which species should be prioritised in frozen storage with regard to Iceland‘s short growing season.