Janne Kjønaas

Research Professor

(+47) 940 59 995
janne.kjonaas@nibio.no

Place
Ås H8

Visiting address
Høgskoleveien 8, 1433 Ås

To document

Abstract

Background and aims Decomposition of the finest harvest residues is important for the carbon and nutrient cycle in forest ecosystems both before and after tree felling. We assumed that decomposition is dependent on harvest residue fraction and chemistry, soil temperature and moisture, and aimed at determining decomposition rates and nutrient dynamics of needles, twigs and fine roots from newly felled Picea abies trees in two sites with different climate and topography. Methods Decomposition of needles, twigs and fine roots in mesh bags was followed for up to six years and four years in harvesting sites in eastern and western Norway, respectively. The western site had a more humid climate and a steeper terrain than the eastern site. Results The mass loss after two years was significantly higher for needles (49–59%) than for twigs and fine roots (29–38%). Between sites, there was no significant difference between mass loss for neither needles nor twigs. Nitrogen accumulated in needles during the first year, but 35% of initial needle N had been released after three years. The initial needle and twig decomposition rate was dependent on soil moisture and topographic aspect. During the first three years, needle lignin concentrations retarded whereas P concentrations stimulated needle mass loss. For twigs, P concentrations stimulated mass loss, whereas higher soil temperatures reduced it. Conclusions Lignin and P concentrations of plant parts and soil temperature were the most important factors for the first three-year mass loss. The slow release of nutrients shows the importance of remaining needles, twigs and fine roots as a long-time nutrient source in the ecosystems under study.

Abstract

Short-term (three to four years) effects of forest harvesting on soil solution chemistry were investigated at two Norway spruce sites in southern Norway, differing in precipitation amount and topography. Experimental plots were either harvested conventionally (stem-only harvesting, SOH) or whole trees, including crowns, twigs and branches were removed (whole-tree harvesting, WTH), leaving residue piles on the ground for some months before removal. The WTH treatment had two sub-treatments: WTH-pile where there had been piles and WTH-removal, from where residues had been removed to make piles. Increased soil solution concentrations of NO3–N, total N, Ca, Mg and K at 30 cm depth, shown by peaks in concentrations in the years after harvesting, were found at the drier, less steep site in eastern Norway after SOH and WTH-pile, but less so after WTH-removal. At the wetter, steeper site in western Norway, peaks were often observed also at WTH-removal plots, which might reflect within-site differences in water pathways due largely to site topography.

Abstract

Changes in forest management have been suggested as a government policy to mitigate climate change in Norway. Tree species change is one of the major strategies considered, with the aim to increase the annual uptake of CO2 as well as the long-term storage of carbon (C) in forests. The strategy includes replacing native, deciduous species with fast-growing species, mainly Norway spruce. Forests in western Norway host some of the largest soil C pools in Scandinavia, and may potentially function as a long-term C reservoir as well as a large source of atmospheric CO2 through decomposition. The project BalanC was initiated in 2016 in order to estimate the C storage potential related to tree species in a total of 15 parallel plots of birch and planted Norway spruce at 5 locations in western Norway. In addition to estimates of C stocks in biomass and soils, we investigate soil C processes, soil fungal and earthworm diversity, albedo, and wood product life-cycles. The current presentation focuses on C stocks in soils relative to trees, soil respiration, and soil climate data. Preliminary results indicate that the soil respiration in spruce was 85 % of the respiration in birch, with a span ranging from 55-151%. The preliminary soil temperature and soil moisture data of the spruce stands were 97 and 73%, respectively, of the birch stands, indicating cooler and drier conditions under spruce which may affect decomposition and C accumulation rates. We expect C allocation in the soil to be affected by tree species, with larger C stocks in the forest floor of spruce stands compared to the mineral soil. Consistent differences in the bulk density of soils under each tree species are likely to be observed, pointing out the need to compare soil C stocks based on equal soil mass. The magnitude of the combined C stock in biomass and soil may increase with planting of spruce, however, we also expect an impact on C stability that will affect the overall mitigation effect of this measure.

Abstract

For å verifisere beregningsmetoder og modeller for endringer av karbonlagre i skogsjord brukt i UNFCCC rapporteringen er det behov for data fra jordprøver med gjentak over tid og der prøvetakingsmetoder er konsistente. I Norge finnes ikke denne typen data på nasjonalt / landsdekkende nivå. For å møte behovet for verifisering av beregningsmetodikken brukt i UNFCCC rapporteringen innenfor rammene av eksisterende data med metodisk konsistens over tid, er det i denne undersøkelsen gjennomført ny prøvetaking av jord og vegetasjon i to etablerte forsøksfelt i skog i sør-øst Norge der vi fra før av både har data fra tidligere jordprøveanalyser og tilvekstdata for trær i skogsbestand. De to forsøksfeltene ligger på Nordmoen i Akershus (etablert 1973 og tilplantet 1974) og i Skiptvet i Østfold (etablert 1976 i eksisterende foryngelse med supplerplanting i 1977). Med nye jordprøver, biomassemålinger og vegetasjonsanalyser i 2011 gir dette to tidsserier på hhv. 38 og 34 år med hensyn på endringer i jordkarbon og inngangsverdier i beregningsmodellene. Den eksperimentelle behandlingen i Skiptvet omfatter ulik grad av treslagsblanding av bjørk og gran på de enkelte forsøksrutene, mens på Nordmoen sammenliknes rene bestand av hhv. bjørk, gran og furu. De klimatiske forhold er tilnærmet like, mens jordsmonntypen er ulik med næringsfattig sandjord på Nordmoen og næringsrik leirjord i Skiptvet. Resultatene fra forsøkene er begrenset til å representere klimatiske og vegetasjonsmessige forhold på Østlandet (og forhold tilsvarende de to lokalitetene), og forsøksfeltene er dermed ikke representative eksempelvis for kystnære og kontinentale strøk.

Abstract

Soil texture is a key soil physical property for soil quality and used in modeling studies through pedotransfer functions (PTF) for the prediction of physical, e.g. hydraulic, soil properties. Soil texture is quantified by a particle size distribution (PSD) of the fine earth fraction and often translated into a texture class using defined separates of clay (0 - 2 µm), silt (2 µm to 20 µm, 50 µm or 63 µm) and sand (20 µm, 50 µm or 63 µm up to 2 mm) illustrated in a texture triangle. Until now pretreatment methods (e.g. humus and carbonate removal and dispersion) followed by standardised sedimentation and sieving methods have been well-defined. From literature and a mini-survey, we know already that laser diffraction is a commonly used analytical method for soil PSD determination in scientific environmental studies that involve soils. A body of literature has documented that colloid-sized fraction results obtained by laser diffraction analysis of fine-textured soil samples are not comparable to those obtained with sedimentation and sieving methods, when translating to the traditional particle size limits clay, silt and sand. Also, operating procedures for pretreatment of soil samples are variable, and the analyzed sample volumes are small, adding to uncertainty. In this study we first compared PSD’s from three different instruments for a set of soil samples to study reproducibility using the analytical operating procedures developed by the owner institutions (Malvern Mastersizer 2000, University of Copenhagen, Coulter LS230, University of Helsinki, and Sympatec Helos, Aarhus University). Secondly, we compared the influence of 1 mm sieving and found decreased fraction standard deviation and improved repeatability of the PSD determination by laser diffraction on the Coulter LS230. 1 mm sieving should be corrected for if the mass is more than a few percent, but depending on study purpose. Thirdly, the laser diffraction PSD’s were compared with PSD’s obtained by sieving and hydrometer analysis showing well-known underestimation of colloids and fine fractions, that increased with colloid content. We conclude that PSD’s obtained by the laser diffraction method are repeatable and mostly reproducible given standardised pretreatment. Translation to texture class using traditional separates does not work well, and more work and new PTF’s for soils are needed that can translate a laser diffraction PSD into a texture class and its associated physical properties for further use in modeling studies.

To document

Abstract

Spatially explicit knowledge of recent and past soil organic carbon (SOC) stocks in forests will improve our understanding of the effect of human- and non-human-induced changes on forest C fluxes. For SOC accounting, a minimum detectable difference must be defined in order to adequately determine temporal changes and spatial differences in SOC. This requires sufficiently detailed data to predict SOC stocks at appropriate scales within the required accuracy so that only significant changes are accounted for. When designing sampling campaigns, taking into account factors influencing SOC spatial and temporal distribution (such as soil type, topography, climate and vegetation) are needed to optimise sampling depths and numbers of samples, thereby ensuring that samples accurately reflect the distribution of SOC at a site. Furthermore, the appropriate scales related to the research question need to be defined: profile, plot, forests, catchment, national or wider. Scaling up SOC stocks from point sample to landscape unit is challenging, and thus requires reliable baseline data. Knowledge of the associated uncertainties related to SOC measures at each particular scale and how to reduce them is crucial for assessing SOC stocks with the highest possible accuracy at each scale. This review identifies where potential sources of errors and uncertainties related to forest SOC stock estimation occur at five different scales—sample, profile, plot, landscape/regional and European. Recommendations are also provided on how to reduce forest SOC uncertainties and increase efficiency of SOC assessment at each scale.

Abstract

Whole-tree harvest (WTH), i.e. harvesting of forest residues (twigs, branches and crown tops) in addition to stems, for bioenergy purposes may lead to biodiversity loss and changes in species composition in forest ground vegetation, which in turn also will affect soil properties. Effects of clear-cut harvesting on ground vegetation have been investigated at two Norway spruce sites in southern east and western Norway, respectively, differing in climate and topography. Experimental plots at these two sites were either harvested conventionally (stem-only harvest, SOH), leaving harvest residues spread on the site,or WTH was carried out, with the residues collected into piles at the site for six - nine months prior to removal. Vegetation plots in the eastern site were established and analysed before WTH and SOH in 2008 and reanalysed after harvesting in 2010, 2012 and 2014. In the western site vegetation plots were established before WTH and SOH in 2010 and reanalysed after harvesting in 2012 and 2014 (and planned for 2016). All vegetation plots are permanently marked. Pre-as well as post-harvesting species abundances of all species in each vegetation plot were each time recorded as percentage cover (vertical projection) and subplot frequency. Environmental variables (topographical, soil physical, soil chemical, and tree variables) were recorded only once; before WTH and SOH. Effec ts of WTH and SOH on ground vegetation biodiversity and cover are presented.

To document

Abstract

The aim of this paper is to evaluate relationships between decomposition rates of Scots pine (Pinus sylvestris) and lodgepole pine (Pinus contorta var. contorta) needle litter in the late stage of decomposition (>30% accumulated mass loss), and the progressively changing concentrations of manganese (Mn), nitrogen (N), and acid unhydrolyzable residue (AUR), as well as mean annual temperature (MAT) and mean annual precipitation (MAP). Using available long-term decomposition studies on pine needle litter in a climate gradient in Sweden, we calculated annual mass loss and related to concentrations of Mn, N, and AUR at the start of each one-year period as well as to MAT and MAP. We investigated these relationships for (i) all data on annual mass loss combined and (ii) annual mass loss for five different decomposition categories as defined by accumulated mass loss. We found highly significant, negative, and dominant relationships between annual mass loss and N (R2 = 0.39) and AUR (R2 = 0.39), a slight but significant positive relationship to Mn (R2 = 0.08) and a significant negative relationship to MAT (R2 = 0.06). The relationships were dynamic, and changed with accumulated mass loss. The rate-dampening effect of N decreased to be a rate-enhancing effect at c. 60–80% accumulated mass loss. A similar trend was found for AUR, becoming rate-enhancing at 70–80% accumulated mass loss. For Scots pine needle litter the effect of MAT on mass loss decreased with increasing accumulated mass loss and changed to a rate-dampening effect at c. 50–70% accumulated mass loss. Mn showed a stimulating effect on mass loss rate in all categories whereas MAP showed no effect in this mainly boreal climatic gradient. The current approach indicates a method for detailed studies of rate-regulating factors for litter decomposition.

To document

Abstract

Tree harvest and different harvesting methods may affect the soil carbon (C) pool in forest ecosystems. In con- ventional stem-only timber harvesting (SOH), branches and tops that are left in the forests may contribute to the build-up of the soil carbon pool. In whole-tree harvesting (WTH), inputs of organic matter from branches and tops are strongly reduced. We established field experiments at Gaupen, SE and Vindberg, SW Norway, to study the short-term effects of SOH and WTH on processes affecting the accumulation and loss of soil C. Logging residues on the WTH plots were collected in piles that were removed after 6 months, rendering two sub treatments (WTH- pile and WTH-removal areas). We weighed selected trees and logging residues, surveyed understorey biomass production, quantified pre-harvest soil C and nutrient pools down to 30 cm. Soil respiration was measured and soil water sampled monthly during the growing season, while temperature and moisture were measured continuously. Organic and mineral horizons were incubated at different temperatures to estimate potential C and N mineraliza- tion, and deep sequencing of the ITS2 barcode region of fungal DNA was performed on the samples. Litterbags were deployed in the SOH plots. The logging residues amounted to 2.2-2.4 kg C m-2 At Gaupen, the mean in situ soil respiration rates increased following harvest with all treatments, but were significantly higher in WTH-pile and SOH relative to the WTH- removal areas in the first year as well as the fourth year of treatment. The former rates included aboveground decomposing needles and twigs but excluded coarser branches. The observed increase in the WTH-removal areas may be related to decomposing roots, as well as to increased C mineralization partly due to the higher soil tem- peratures following harvest. Soil temperature was the single most important factor explaining the variability in soil respiration rates over all treatments. At Vindberg, a decrease in soil respiration was observed with all treatments in the second and third years following harvest. At both sites, decomposition of logging residues from needles was more rapid relative to twigs and fine roots. The decomposing residues released a substantial amount of nitrogen which was gradually reflected in the soil water at 30 cm soil depth. A considerable increase in the NO3-N concen- tration also in the WTH-removal areas in the second year following harvest suggests an increase in N availability from decomposing fine roots and/or soil organic matter. The increased N availability in the WTH-removal areas was supported by results from short term lab incubations of undisturbed soil from the forest floor. The changes in the WTH-removal areas were also reflected in the soil fungal diversity: saprophytic ascomycetes on decaying plant material showed a striking increase in all treatments. For the WTH-removal areas, this may, again, be related to the increased input of root litter; however, the decrease in mycorrhizal basidiomycete species and the vigorous increase of ascomycetes following harvest may also affect the C mineralization of soil organic matter.

Abstract

Reliable methods are required to predict changes in soil carbon stocks. Process-based models often require many parameters which are largely unconstrained by observations. This induces uncertainties which are best met by using repeated measurements from the same sites. Here, we compare two carbon models, Yasso07 and Romul, in their ability to reproduce a set of field observations in Norway. The models are different in the level of process representation, structure, initialization requirements and calibration- and parameterization strategy. Field sites represent contrasting tree species, mixture and soil types. The number of repetitions of C measurements varies from 2 to 6 over a period of up to 35 years, and for some of the sites, which are part of long-term monitoring programs, plenty of auxiliary information is available. These reduce the danger of overparametrization and provide a stringent testbed for the two models. Focus is on the model intercomparison, using identical site descriptions to the extent possible, but another important aspect is the upscaling of model results to the regional or national scale, utilizing the Norwegian forest inventory system. We suggest that a proper uncertainty assessment of soil C stocks and changes has to include at least two (and preferably more) parametrized models.

To document

Abstract

Enhancement of the atmospheric N deposition is a serious threat for the structure and function of ecosystems. Here we evaluate the ecological effects of excess N with respect to changes in vegetation and soil biota in a series of experiments along a N gradient across Europe. The aim of this project (NITREX: N saturation EXperiments) is to assess the risk of N saturation and the reversibility of N saturation. At the experimental sites with a low-to-moderate input, N was added (n = 3), while at sites with a high input, N was removed by means of a transparent roof (n = 4). The experiments started between 1989 and 1991. Across the N gradient a positive correlation was found between the N concentration in deposition or soil solution with the N concentration in the needles and in general a negative correlation with the base cations K and Mg. In the N-addition plots there was a tendency towards a decreasing nutrient status of the needles, whereas at one site N-removal led to an improvement. Addition of N hardly affected fine-root biomass production, whereas signs of growth increase were recorded when the input was reduced. Tree growth was accelerated upon input reduction at two of three sites. Manipulation of N input did not alter the decomposition rate, although significant differences between sites were noted. Manipulation of the N input hardly affected the biomass of fungi and bacteria, but a negative relation between the N-addition and part of the soil fauna may be present among sites.