Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Authors
Habtamu AlemAbstract
Previous studies estimating TFP and its components have been criticized for not considering farm heterogeneity in their model. Moreover, the studies focused on the technical evaluation of a sector. However, the technical evaluation alone reveals how well farmers use the physical production process. There is a need to closely examine the cost efficiency of the farmers. In this study, we used a cost function (dual) approach to facilitating the decomposition and estimation of TFP components. Using a translog stochastic cost function, we estimated the level and source of productivity and profitability change for crop producing family firms in Norway. We used the true random effect to account for farm heterogeneity. The analysis is based on 23 years unbalanced panel data (1991-2013) from 455 crop- producing firms with a total of 3885 observations. The result indicates that average annual productivity growth rate in grain and forage production was - 0.11 % per annum during the period 1991-2013. The profit change was 0.14 % per annum.
Authors
Habtamu AlemAbstract
Previous studies estimating TFP and its components have been criticized for not considering farm heterogeneity in their model. Moreover, the studies focused on the technical evaluation of a sector. However, the technical evaluation alone reveals how well farmers use the physical production process. There is a need to closely examine the cost efficiency of the farmers. In this study, we used a cost function (dual) approach to facilitating the decomposition and estimation of TFP components. Using a translog stochastic cost function, we estimated the level and source of productivity and profitability change for crop producing family firms in Norway. We used the true random effect to account for farm heterogeneity. The analysis is based on 23 years unbalanced panel data (1991-2013) from 455 crop- producing firms with a total of 3885 observations. The result indicates that average annual productivity growth rate in grain and forage production was - 0.11 % per annum during the period 1991-2013. The profit change was 0.14 % per annum.
Authors
Habtamu AlemAbstract
This doctoral thesis incorporates an integrated framework for the measurement and analysis of the performance of Norwegian farms, focusing on crop-producing and dairy farms. Farm-level datasets were used in the analysis. The thesis comprises an introductory chapter and five independent research articles. The aim of the first article is to explore the effects of model specifications and estimate short-run and long-run inefficiency. We used the transcendental logarithmic (translog) cost function and the analysis is based on unbalanced farm-level panel data for the period 1991–2013 from 455 Norwegian farms that specialise in crop production in the Eastern and Central regions of Norway. It was found that cost efficiency scores are sensitive to how the inefficiency is modelled and interpreted. Empirical analysis demonstrates that the magnitude of long-run inefficiency (5%) is lower than the level of short-run inefficiency (6%). It would be possible to reduce crop production costs by, on average, up to 5% if shortfalls in managerial capabilities were reduced. Such shortfalls in farmers’ management abilities derive from such factors as lack of farming experience and lack of farm ownership. On the other hand, it would be possible to reduce crop production costs by up to 6% if transient inefficiencies could be eliminated. On average, actual costs could be reduced by 11% without reducing output if both forms of inefficiency were eliminated from Norwegian crop production. Policy interventions to this end might include providing training in farm-management practices, and policy changes to ease rigidity in farm ownership. The objective of the second article is to measure the economic performance of two crop-producing Norwegian farms while accounting for both unobserved heterogeneity and environmental variables. The analysis employs a translog cost function and is based on unbalanced farm-level panel data comprising 3,855 observations (1,004 observations from the central region and 2,884 from the eastern region). We found that the mean minimum costs for the period 1991–2013 were approximately 93% and 92% of the actual production costs for crop farms in the central and eastern regions, respectively. The marginal effects of crop rotation, land tenure, off-farm activity, direct government support, and experience positively correlated with the economic performance of crop farms. In both regions, the marginal contribution of these variables to economic performance increased for the period 2000–2013 compared to 1991–1999. The aim of Article 3 is to measure the contribution of productivity and price change to changes in the profitability of crop-producing family farms in Norway. The results indicate that the average annual productivity growth rate for grain and forage production decreased by 0.11% per annum over the period 1991–2013. Profits decreased by 0.14% per annum primarily due to the effect of the trend of increasing input prices and a decline in total factor productivity. Interventions to improve the productivity of farms would also improve farm profitability.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Dag Fjeld Oivind Østby-Berntsen Bruce TalbotAbstract
No abstract has been registered
Authors
Bjørn ØklandAbstract
No abstract has been registered
Abstract
Miljøpåvirkning av tre sammenlignet med andre bygningsmaterialer Den norske regjeringen har satt klare mål for å redusere forbruket av fossil energi og klimagassutslipp. Byggsektoren kan bidra for å nå disse målene ved å: Bygge energieffektive bygg; Bruke materialer med lavt forbruk av grå energi (low embodied energy materials); Bruke byggematerialer som lager for atmosfærisk karbondioksid.
Authors
Heidi Udnes Aamot Ingeborg Klingen Simon Edwards May Bente Brurberg Toril Eklo Hege Særvold Steen Jafar Razzaghian Elisa Gauslaa Ingerd Skow HofgaardAbstract
The plant pathogenic fungus Fusarium langsethiae produces the highly potent mycotoxins HT-2 and T-2. Since these toxins are frequently detected at high levels in oat grain lots, they pose a considerable risk for food and feed safety in Norway, as well as in other north European countries. To reduce the risk of HT-2/T- 2-contaminated grain lots to enter the food and feed chain, it is important to identify factors that influence F. langsethiae infection and mycotoxin development in oats. However, the epidemiology of F. langsethiae is unclear. A three-year survey was performed to reveal more of the life cycle of F. langsethiae and its interactions with oats, other Fusarium species, as well as insects, mites and weeds. We searched for inoculum sources by quantifying the amount of F. langsethiae DNA in crop residues, weeds, and soil sampled from a selection of oat-fields. To be able to define the onset of infection, we analysed the amount of F. langsethiae DNA in oat plant material sampled at selected growth stages (between booting and maturation), as well as the amount of F. langsethiae DNA and HT-2 and T-2 toxins in the mature grain. We also studied the presence of possible insect- and mite vectors sampled at the selected growth stages using Berlese funnel traps. The different types of materials were also analysed for the presence F. graminearum DNA, the most important deoxynivalenol producer observed in Norwegian cereals, and which presence has shown a striking lack of correlation with the presence of F. langsethiae in oat. Results show that F. langsethiae DNA may occur in the oat plant already before heading and flowering. Some F. langsethiae DNA was observed in crop residues and weeds, though at relatively low levels. No Fusarium DNA was detected in soil samples. Of the arthropods that were associated with the collected oat plants, aphids and thrips species were dominating. Further details will be given at the meeting.
Authors
Roger Holten Frederik Bøe Marit Almvik Sheela Katuwal Marianne Stenrød Mats Larsbo Nicholas Jarvis Ole Martin EkloAbstract
Limited knowledge and experimental data exist on pesticide leaching through partially frozen soil. The objective of this study was to better understand the complex processes of freezing and thawing and the effects these processes have on water flow and pesticide transport through soil. To achieve this we conducted a soil column irrigation experiment to quantify the transport of a non-reactive tracer and the herbicide MCPA in partially frozen soil. In total 40 intact topsoil and subsoil columns from two agricultural fields with contrasting soil types (silt and loam) in South-East Norway were used in this experiment. MCPA and bromide were applied on top of all columns. Half the columns were then frozen at −3 °C while the other half of the columns were stored at +4 °C. Columns were then subjected to repeated irrigation events at a rate of 5 mm artificial rainwater for 5 h at each event. Each irrigation was followed by 14-day periods of freezing or refrigeration. Percolate was collected and analysed for MCPA and bromide. The results show that nearly 100% more MCPA leached from frozen than unfrozen topsoil columns of Hov silt and Kroer loam soils. Leaching patterns of bromide and MCPA were very similar in frozen columns with high concentrations and clear peaks early in the irrigation process, and with lower concentrations leaching at later stages. Hardly any MCPA leached from unfrozen topsoil columns (0.4–0.5% of applied amount) and concentrations were very low. Bromide showed a different flow pattern indicating a more uniform advective-dispersive transport process in the unfrozen columns with higher con- centrations leaching but without clear concentration peaks. This study documents that pesticides can be pre- ferentially transported through soil macropores at relatively high concentrations in partially frozen soil. These findings indicate, that monitoring programs should include sampling during snow melt or early spring in areas were soil frost is common as this period could imply exposure peaks in groundwater or surface water.