Abdelhameed Elameen

Research Scientist

(+47) 926 08 797
abdelhameed.elameen@nibio.no

Place
Ås H7

Visiting address
Høgskoleveien 7, 1433 Ås

To document

Abstract

The oomycete Phytophthora infestans, the cause of late blight, is one of the most important potato pathogens. During infection, it secretes effector proteins that manipulate host cell function, thus contributing to pathogenicity. This study examines sequence differentiation of two P. infestans effectors from 91 isolates collected in Poland and Norway and five reference isolates. A gene encoding the Avr-vnt1 effector, recognized by the potato Rpi-phu1 resistance gene product, is conserved. In contrast, the second effector, AvrSmira1 recognized by Rpi-Smira1, is highly diverse. Both effectors contain positively selected amino acids. A majority of the polymorphisms and all selected sites are located in the effector C-terminal region, which is responsible for their function inside host cells. Hence it is concluded that they are associated with a response to diversified target protein or recognition avoidance. Diversification of the AvrSmira1 effector sequences, which existed prior to the large-scale cultivation of plants containing the Rpi-Smira1 gene, may reduce the predicted durability of resistance provided by this gene. Although no isolates virulent to plants with the Rpi-phu1 gene were found, the corresponding Avr-vnt1 effector has undergone selection, providing evidence for an ongoing ‘arms race’ between the host and pathogen. Both genes remain valuable components for resistance gene pyramiding.

Abstract

The apple fruit moth Argyresthia conjugella (Lepidoptera, Yponomeutidae) is a seed predator of rowan (Sorbus aucuparia) and is distributed in Europe and Asia. In Fennoscandia (Finland, Norway and Sweden), rowan fruit production is low every 2–4 years, and apple (Malus domestica) functions as an alternative host, resulting in economic loss in apple crops in inter-mast years. We have used Illumina MiSeq sequencing to identify a set of 19 novel tetra-nucleotide short tandem repeats (STRs) in Argyresthia conjugella. Such motifs are recommended for genetic monitoring, which may help to determine the eco-evolutionary processes acting on this pest insect. The 19 STRs were optimized and amplified into five multiplex PCR reactions. We tested individuals collected from Norway and Sweden (n = 64), and detected very high genetic variation (average 13.6 alleles, He = 0.75) compared to most other Lepidoptera species studied so far. Spatial genetic differentiation was low and gene flow was high in the test populations, although two non-spatial clusters could be detected. We conclude that this set of genetic markers may be a useful resource for population genetic monitoring of this economical important insect species.

Abstract

Knowledge about the reproduction strategies of invasive species is fundamental for effective control. The invasive Fallopia taxa (Japanese knotweed s.l.) reproduce mainly clonally in Europe, and preventing spread of vegetative fragments is the most important control measure. However, high levels of genetic variation within the hybrid F. × bohemica indicate that hybridization and seed dispersal could be important. In Norway in northern Europe, it is assumed that these taxa do not reproduce sexually due to low temperatures in the autumn when the plants are flowering. The main objective of this study was to examine the genetic variation of invasive Fallopia taxa in selected areas in Norway in order to evaluate whether the taxa may reproduce by seeds in their most northerly distribution range in Europe. Fallopia stands from different localities in Norway were analyzed with respect to prevalence of taxa, and genetic variation within and between taxa was studied using amplified fragment length polymorphism (AFLP). Taxonomic identification based on morphology corresponded with identification based on simple sequence repeats (SSR) and DNA ploidy levels (8× F. japonica, 6× F. × bohemica and 4× F. sachalinensis). No genetic variation within F. japonica was detected. All F. × bohemica samples belonged to a single AFLP genotype, but one sample had a different SSR genotype. Two SSR genotypes of F. sachalinensis were also detected. Extremely low genetic variation within the invasive Fallopia taxa indicates that these taxa do not reproduce sexually in the region, suggesting that control efforts can be focused on preventing clonal spread. Climate warming may increase sexual reproduction of invasive Fallopia taxa in northern regions. The hermaphrodite F. × bohemica is a potential pollen source for the male-sterile parental species. Targeted eradication of the hybrid can therefore reduce the risk of increased sexual reproduction under future warmer climate.

Abstract

Important losses in strawberry production are often caused by the oomycete Phytophthora cactorum, the causal agent of crown rot. However, very limited studies at molecular levels exist of the mechanisms related to strawberry resistance against this pathogen. To begin to rectify this situation, a PCR-based approach (NBS profiling) was used to isolate strawberry resistance gene analogs (RGAs) with altered expression in response to P. cactorum during a time course (2, 4, 6, 24, 48, 96 and 192 h post-infection). Twenty-three distinct RGA fragments of the NB-LRR type were identified from a resistance genotype (Bukammen) of the wild species Fragaria vesca. The gene transcriptional profiles after infection showed that the response of most RGAs was quicker and stronger in the resistance genotype (Bukammen) than in the susceptible one (FDP821) during the early infection stage. The transcriptional patterns of one RGA (RGA109) were further monitored and compared during the P. cactorum infection of two pairs of resistant and susceptible genotype combinations (Bukammen/FDP821 and FDR1218/1603). The 5′ end sequence was cloned, and its putative protein was characteristic of NBS-LRR R protein. Our results yielded a first insight into the strawberry RGAs responding to P. cactorum infection at molecular level.

Abstract

The apple fruit moth (Argyresthia conjugella (A. conjugella)) in Norway was first identified as a pest in apple production in 1899. We here report the first genetic analysis of A. conjugella using molecular markers. Amplified fragment length polymorphism (AFLP) analysis was applied to 95 individuals from six different locations in the two most important apple-growing regions of Norway. Five AFLP primer combinations gave 410 clear polymorphic bands that distinguished all the individuals. Further genetic analysis using the Dice coefficient, Principal Coordinate analysis (PCO) and Bayesian analyses suggested clustering of the individuals into two main groups showing substantial genetic distance. Analysis of molecular variance (AMOVA) revealed greater variation among populations (77.94%) than within populations (22.06%) and significant and high FST values were determined between the two major regions (Distance = 230 km, FST = 0.780). AFLP analysis revealed low to moderate genetic diversity in our population sample from Norway (Average: 0.31 expected heterozygosity). The positive significant correlation between the geographic and the molecular data (r2 = 0.6700) indicate that genetic differences between the two major regions may be due to geographical barriers such as high mountain plateaus (Hardangervidda) in addition to isolation by distance (IBD).

To document

Abstract

Amplified fragment length polymorphism (AFLP) was used to study the genetic variation among 80 F. verticillioides isolates from kernels of Ethiopian maize, collected from 20 different maize growing areas in four geographic regions. A total of 213 polymorphic fragments were obtained using six EcoRI/MseI primer combinations. Analysis of the data based on all 213 polymorphic AFLP fragments revealed high level of genetic variation in the F. verticillioides entities in Ethiopia. About 58% of the fragments generated were polymorphic. The genetic similarity among F. verticillioides isolates varied from 46% to 94% with a mean Dice similarity of 73%. Unweighted Pair Group Method with Arithmetic Average (UPGMA) analysis revealed two main groups and four subgroups. The principal coordinate analysis (PCO) also displayed two main groups that agreed with the results of UPGMA analysis, and there was no clear pattern of clustering of isolates according to geographic origin. Analysis of molecular variance: (AMOVA) showed that only 1.5% of the total genetic variation was between geographic regions, while 98.5% was among isolates from the same geographic regions of Ethiopia. Eighty distinct haplotypes were recognized among the 80 isolates analyzed. Hence, breeding efforts should concentrate on quantitative resistance that is effective against all genotypes of the pathogen.

To document

Abstract

According to the Norwegian Diversity Act, practitioners of restoration in Norway are instructed to use seed mixtures of local provenance. However, there are no guidelines for how local seed should be selected. In this study, we use genetic variation in a set of alpine species (Agrostis mertensii, Avenella flexuosa, Carex bigelowii, Festuca ovina, Poa alpina and Scorzoneroides autumnalis) to define seed transfer zones to reduce confusion about the definition of ‘local seeds’. The species selected for the study are common in all parts of Norway and suitable for commercial seed production. The sampling covered the entire alpine region (7–20 populations per species, 3–15 individuals per population). We characterised genetic diversity using amplified fragment length polymorphisms. We identified different spatial genetic diversity structures in the species, most likely related to differences in reproductive strategies, phylogeographic factors and geographic distribution. Based on results from all species, we suggest four general seed transfer zones for alpine Norway. This is likely more conservative than needed for all species, given that no species show more than two genetic groups. Even so, the approach is practical as four seed mixtures will serve the need for restoration of vegetation in alpine regions in Norway.

Abstract

Initial sources of inoculum of Phytophthora infestans were investigated in ten potato fields with early outbreaks of potato late blight. Infected plant samples and isolates from these fields were examined with respect to mating type prevalence, fungicide resistance and genotypes based on microsatellites A high proportion (91 %) of the isolates recovered were of mating type A1. However, both mating types were found in 3 of 9 fields with more than one isolate recovered, and sometimes both mating types were found on the same plant. Most of the isolates recovered from fields treated with metalaxyl-M prior to sampling had reduced sensitivity or were resistant to metalaxyl-M, and most of the isolates recovered form fields without metalaxyl treatment were sensitive. The isolates recovered from fields treated with propamocarb prior to sampling had a higher frequency of reduced sensitivity to propamocarb than isolates from fields without propamocarb treatment. We found that most plants contained more than one P. infestans SSR-genotype. Clustering analysis of the infected samples revealed that most samples clustered together according to fields. By combining information from P. infestans isolates and DNA extracts from the leaf lesions we found examples of both mating type A1 and A2 having the same multilocus genotype. This result indicates that both of these genotypes have a common ancestor, hence the inoculum originates from oospores. Although this a minor study of only 10 fields with a limited amount of isolates and plant samples, the results indicate oospores in the soil is an inoculum source. Hence the forecasting model to predict outbreaks of potato late blight should be modified to include this.

Abstract

Plasmopara halstedii is a diploid oomycete plant pathogen causing downy mildew on sunflower (Helianthus annuus). Due to changes in cultural systems and the introduction of new exotic cultivars, the pathogen developed many races and have now become a serious problem affecting sunflower growing fields in Europe. The yield losses in sunflower crop caused by P. halstedii can be up to 85 %.

To document

Abstract

Sweet potato (Ipomoea batatas L.) is the fifth most important crop in the developing countries after rice, wheat, maize and cassava. The amplified fragment length polymorphism (AFLP) method was used to study the genetic diversity and relationships of sweet potato accessions in the germplasm collection of Sokoine University of Agriculture, Morogoro and Sugarcane Research Institute, Kibaha, Tanzania. AFLP analysis of 97 sweet potato accessions using ten primer combinations gave a total of 202 clear polymorphic bands. Each one of the 97 sweet potato accessions could be distinguished based on these primer combinations. Estimates of genetic similarities were obtained by the Dice coefficient, and a final dendrogram was constructed with the un-weight pair-group method using arithmetic average. AFLP-based genetic similarity varied from 0.388 to 0.941, with a mean of 0.709. Cluster analysis using genetic similarity divided the accessions into two main groups suggesting that there are genetic relationships among the accessions. Principal Coordinate analysis confirmed the pattern of the cluster analysis. Analysis of molecular variance revealed greater variation within regions (96.19%) than among regions (3.81%). The results from the AFLP analysis revealed a relatively low genetic diversity among the germplasm accessions and the genetic distances between regions were low. A maximally diverse subset of 13 accessions capturing 97% of the molecular markers diversity was identified. We were able to detect duplicates accessions in the germplasm collection using the highly polymorphic markers obtained by AFLP, which were found to be an efficient tool to characterize the genetic diversity and relationships of sweet potato accessions in the germplasm collection in Tanzania.

To document

Abstract

Rhodiola rosea is widely distributed in Norway, but so far limited knowledge exists on the level of genetic diversity. To initiate a selective breeding program, Amplified Fragment Length Polymorphism (AFLP) analysis was used to estimate genetic diversity within the Norwegian R. rosea germplasm collection. AFLP analysis of 97 R. rosea clones using five primer combinations gave a total of 109 polymorphic bands. We detected high percentage of polymorphic bands (PPB) with a mean of 82.3% among the clones of R. rosea. Each of the 97 R. rosea clones could be unambiguously identified based on these primer combinations. Estimates of genetic similarities were obtained by the Dice coefficient, and a final dendrogram was constructed with the Unweighted Pair Group Method with Arithmetic mean (UPGMA). Genetic similarity based on the AFLP data ranged from 0.440 to 0.950 with a mean of 0.631. This genetic analysis showed that there was no close genetic similarity among clones related to their original growing county. No gender-specific markers were found in the R. rosea clones. Analysis of molecular variance (AMOVA) revealed a significantly greater variation within regions (92.03%) than among regions (7.97%). A low level of genetic differentiation (F-ST=0.043) was observed, indicating a high level of gene flow, which had a strong influence on the genetic structure at different counties. Our results indicate high gene flow among R rosea clones that might be a result of seed dispersal rather than cross-pollination. Further world-wide studies are required to compare the level of genetic diversity and more studies in R. rosea detailing the consequences of different patterns of gene flow (pollen spread and dispersal of seeds and clonal plants) will be useful for characterization of roseroot. (C) 2008 Elsevier Ltd. All rights reserved.