Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Til dokument

Sammendrag

Climate change in the Nordic countries is projected to lead to both wetter and warmer seasons. This, in combination with associated vegetation changes and increased animal migration, increases the potential incidence of tick-borne diseases (TBD) where already occurring, and emergence in new places. At the same time, vegetation and animal management influence tick habitat and transmission risks. In this paper, we review the literature on Ixodes ricinus, the primary vector for TBD. Current and projected distribution changes and associated disease transmission risks are related to climate constraints and climate change, and this risk is discussed in the specific context of reindeer management. Our results indicate that climatic limitations for vectors and hosts, and environmental and societal/institutional conditions will have a significant role in determining the spreading of climate-sensitive infections (CSIs) under a changing climate. Management emerges as an important regulatory “tool” for tick and/or risk for disease transfer. In particular, shrub encroachment, and pasture and animal management, are important. The results underscore the need to take a seasonal view of TBD risks, such as (1) grazing and migratory (host) animal presence, (2) tick (vector) activity, (3) climate and vegetation, and (4) land and animal management, which all have seasonal cycles that may or may not coincide with different consequences of climate change on CSI migration. We conclude that risk management must be coordinated across the regions, and with other land-use management plans related to climate mitigation or food production to understand and address the changes in CSI risks.

Til dokument

Sammendrag

This study provides a multi-attribute approach to support decisions by Norwegian crop farmers considering adopting innovative crop protection measures. In modelling choice among pest management strategies, we have accounted for both economic risks, risks to human health and risks to the environment. We used the Simple Multi-Attribute Rating Technique (SMART) to evaluate the results of a field trial comparing four different pest management strategies. In the trial, various pre-crops in year one were followed by two consecutive years of winter wheat. Two treatments had different levels of integrated pest management (IPM). IPM1 was the most innovative treatment and used less pesticides (i.e. herbicides, insecticides and fungicides) than IPM2. The third treatment (‘Worst Case’, WC) used pesticides routinely. The fourth treatment (‘No Plant Protection’, NPP) used no plant protection measures except one reduced dose of herbicide per year on winter wheat. Two main attributes were included in the SMART analysis, an economic indicator and a pesticide load indicator, each of which comprised a number of attributes at a subsidiary level. The results showed that the IPM1 and NPP strategies performed better than IPM2 and the WC strategies. However, the ranking of the pest management practices depended on the weighting of the two main attributes. Although the SMART analysis gave ordinal utility values, permitting only ranking of the alternatives, we were able to transform the results to measure financial differences between the alternatives.

Til dokument

Sammendrag

Couch grass (Elymus repens) is a morphologically diverse, rhizomatous, perennial grass that is a problematic weed in a wide range of crops. It is generally controlled by glyphosate or intensive tillage in the intercrop period, or selective herbicides in non-susceptible crops. The aim of this review is to determine the efficacy of non-chemical strategies for E. repens control. The review shows that indirect control measures like crop choice, subsidiary crops, and fertilizer regimes influence E. repens abundance, but usually cannot control E. repens. Defoliation (e.g., mowing) can control E. repens growth, but efficacy varies between clones, seasons, and defoliation frequencies. Tillage in the intercrop period is still the main direct non-chemical control method for E. repens and its efficacy can be increased, and negative side-effects minimized by an appropriate tillage strategy. Some new tillage implements are on the market (Kvik-up type machines) or under development (root/rhizome cutters). Alternative methods that can kill E. repens rhizomes (e.g., steaming, soil solarization, biofumigation, hot water, flooding) often have high costs or time requirements. More studies on the effect of cropping system approaches on E. repens and other perennial weeds are needed.

Til dokument

Sammendrag

This review compiles various literature studies on the environmental impacts associated with the processes of thermal modification of wood. In wood preservation field, the wood modification by heat is considered as an ecofriendly process due to the absence of any additional chemicals. However, it is challenging to find proper scientific and industrial data that support this aspect. There are still very few complete studies on the life cycle assessment (LCA) and even less studies on the environmental impacts related to wood heat treatment processes whether on a laboratory or on an industrial scales. This comprehensive review on environmental impact assessment emphasizes environmental categories such as dwindling of natural resources, cumulative energy intake, gaseous, solid and liquid emissions occurred by the thermal-treated wood industry. All literature-based data were collected for every single step of the process of wood thermal modification like resources, treatment process, transport and distribution, uses and end of life of treated wood products.

Til dokument

Sammendrag

The growing interest in precision livestock farming is prompted by a desire to understand the basic behavioural needs of the animals and optimize the contribution of each animal. The aim of this study was to develop a system that automatically generated individual animal behaviour and localization data in sheep. A sensor-fusion-system tracking individual sheep position and detecting sheep standing/lying behaviour was proposed. The mean error and standard deviation of sheep position performed by the ultra-wideband location system was 0.357 ± 0.254 m, and the sensitivity of the sheep standing and lying detection performed by infrared radiation cameras and three-dimenional computer vision technology were 98.16% and 100%, respectively. The proposed system was able to generate individual animal activity reports and the real-time detection was achieved. The system can increase the convenience for animal behaviour studies and monitoring of animal welfare in the production environment.

Sammendrag

BACKGROUND: Bud dormancy is a quantitative condition that is gradually acquired and lost. Better and more convenient methods for assessment of the time of dormancy entrance of woody plants are highly needed. OBJECTIVE: To demonstrate a simple and convenient method for determination of dormancy in woody plants. METHODS: We employed a seasonal series of soft tipping of vigorously growing annual shoots and used the loss of ability of subtending lateral buds to break and grow as a measure of entrance into dormancy. RESULTS: There was a gradual decline in the ability of the buds to burst and grow during the month of July and early August, culminating with a complete loss of this ability. This coincided with the known time of growth cessation and dormancy induction in shoots of intact plants and occurred in the berry shrubs raspberry and black currant and the forest tree silver birch. CONCLUSIONS: The decline and loss of ability of the buds to grow during late summer is a direct expression of the entrance of buds into the state of endodormancy, rendering the tipping method a simple and convenient method for precise determination of the time of entrance into dormancy in woody plants.

Til dokument

Sammendrag

Forest structural properties largely govern surface fluxes of moisture, energy, and momentum that strongly affect regional climate and hydrology. Forest structural properties are greatly shaped by forest management activities, especially in the Fennoscandia (Norway, Sweden, and Finland). Insight into transient developments in forest structure in response to management intervention is therefore essential to understanding the role of forest management in mitigating regional climate change. The aim of this study is to present a simple grid-based framework – the Fennoscandic Forest State Simulator (F2S2) -- for predicting time-dependent forest structural trajectories in a manner compatible with land models employed in offline or asynchronously coupled climate and hydrological research. F2S2 enables the prescription of future regional forest structure as a function of: i) exogenously defined scenarios of forest harvest intensity; ii) forest management intensity; iii) climate forcing. We demonstrate its application when applied as a stand-alone tool for forecasting three alternative future forest states in Norway that differ with respect to background climate forcing, forest harvest intensity (linked to two Shared Socio-economic Pathways (SSPs)), and forest management intensity. F2S2 captures impacts of climate forcing and forest management on general trends in forest structural development over time, and while climate is the main driver of longer-term forest structural dynamics, the role of harvests and other management-driven effects cannot be overlooked. To our knowledge this is the first paper presenting a method to map forest structure in space and time in a way that is compatible with land surface or hydrological models employing sub-grid tiling.