Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

1999

Sammendrag

In a cropping systems experiment in south-eastern Norway, ecological (ECO), integrated (INT) and conventional (CON) forage (FORAGE) and arable (ARABLE) model farms were compared. After 5 years, topsoil was sampled in spring from spring grain plots and incubated for 449 days at controlled temperature and moisture content. There were no detectable differences between model farms in terms of total soil C or N. For INT and CON, however, values of microbial biomass C and N, microbial quotient, and C and N mineralization were, or tended to be, higher for FORAGE than for ARABLE. For ECO treatment, values were similar for FORAGE and ARABLE and did not differ significantly from that of CON FORAGE. For INT and CON, the metabolic quotient was lower for FORAGE than for ARABLE. Again, for the ECO treatment, values were similar for FORAGE and ARABLE and did not differ significantly from the CON FORAGE. We estimated the size of conceptual soil organic matter pools by fitting a decomposition model to biomass and mineralization data. This resulted in a 48% larger estimate for CON FORAGE than for CON ARABLE of physically protected biomass C. For physically protected organic C the difference was 42 %. Moreover, the stability of soil aggregates against artificial rainfall was substantially greater for CON FORAGE than for CON ARABLE. On this basis, we hypothesized that the lower microbial quotient in the FORAGE soils were mainly caused by a smaller proportion of active biomass due to enclosure of microorganisms within aggregates. Altogether, our results indicate a poorer inherent soil fertility in ARABLE than in FORAGE rotations, but the difference was small or absent in the ECO systems, probably owing to the use of animal and green manures and reduced tillage intensity in the ECO ARABLE rotation.

Sammendrag

The aim of this study was to assess a quick test method determining nitrate in basal stem tissue sap for the prediction of nitrogen status in winter wheat (Triticum aestivum L.). Because of the large between-site and between-year variability, this study does not indicate that the method can be recommended for extended practical use