Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

To document See dataset

Abstract

Background Pollinators are under threat from a variety of environmental drivers, including habitat loss and fragmentation, pesticides, climate change, and invasive species. Despite being domesticated animals, honey bees (Apis mellifera) share many traits with invasive species and several studies have suggested that beekeeping might pose a threat to wild bees and other pollinators. In Norway, the history of beekeeping dates to at least the 18th century, yet little is known about the consequences of this agricultural practice on biodiversity, especially on wild pollinators. The Norwegian Environment Agency therefore asked VKM to provide a brief summary of the available literature on the impact of honey bee keeping on wild pollinating insects and assess whether keeping of honey bees might pose a risk to wild pollinators in Norway. VKM was also asked to specifically assess the impact of stocking rates and placement of honey bee hives in relation to important wild pollinator habitats and vulnerable populations of wild pollinators (e.g. threatened species). Finally, VKM was asked to identify and assess possible risk-reducing measures related to any risk identified. Methods To provide a brief review of the literature on how keeping of honey bees affect wild pollinators, VKM conducted a rapid review, using the "updates of systematic reviews" approach. This approach aimed to update and supplement the two existing systematic reviews on the topic. Following established search protocols, the literature review thus focused on the effects of managed honey bees (Apis mellifera) on wild pollinators, specifically addressing three key areas: (i) competition for floral and nesting resources, (ii) transmission of pathogens and parasites, and (iii) indirect effects via changes in plant communities. Based on the hazards identified in the literature review and one additional hazard identified by experts in the project group, VKM conducted a risk assessment that included hazard identification, hazard characterization, likelihood of impact, and risk characterization for each of the hazards identified, focusing on the Norwegian context. Additionally, for each identified hazard, VKM estimated the confidence levels for each step in the risk assessment. Finally, VKM identified potential risk mitigating measures and assessed their effectiveness. This was done by conducting a literature search to identify potential risk reducing measures and assessing the identified mitigating measures their effectiveness, certainty of effectiveness, and potential harms using the approach developed by Conservation Evidence (see www.conservationevidence.com). Results/Conclusions Status of knowledge The literature review performed by VKM identified 45 recent studies that were not included in the two previous systematic reviews on the topic. The new studies did not provide results that altered the conclusions of the previous reviews. A brief summary of the review is presented below. Competition for floral resources. Managed honey bees can compete with wild pollinators for shared floral resources and this competition can have clear, measurable, negative effects on wild pollinators. Spillover of pathogens and parasites. Managed honey bees can potentially spread bacterial, viral, and fungal pathogens to wild pollinators. The extent to which these pathogens cause disease in wild pollinators is, however, unknown for most wild pollinators. Several parasitic mites can infest hives of managed honey bees, but none of these have been shown to infest wild pollinators found in Norway. One common honey bee pest, the small hive beetle (Aethina tumida), has been found to also infect nests of wild bees. This species is not currently found in Norway. ............................

Abstract

Mountain areas in Norway provide important resources for livestock grazing. These resources are crucial for agricultural production in a country with limited agricultural land and a climate and topography that restrict production of feed and food. A key contributor in the harvest of these resources has been mountain summer farming and outfield grazing in general. However, the use of mountainous grazing resources has been declining strongly for several decades with the regrowth of formerly open areas as a consequence. In contrast, recreational use, number of holiday cabins and associated infrastructure is rapidly increasing. Conflicts between recreational and agriculture use have received increasing attention in different media. We investigated the spatial patterns of cabin development and key grazing areas in Norwegian mountain areas, analysing data on livestock, cabins, and associated infrastructure. We found a large number of cabins and associated infrastructure within high-quality grazing areas indicating that the quality of grazing has not been adequately considered in the location of new cabins. Taking into consideration that cabin development seems not to decrease, the reduced availability of grazing resources may result in an increasing level of conflict and also impact food security in the long run.

To document

Abstract

Forest grazing by free-roaming livestock is a common practice in many countries. The forestry sector sees the practice as unfortunate owing to several reasons, such as damages inflicted by grazing in young plantations. Concerning Norway spruce forests, a tree species known to develop wood decay with high frequency followed from stem bark damage, there is a strong perception among foresters that the trampling damage caused by livestock on the superficial root system of this tree leads to decay. Because of the very limited scientific documentation available on this topic, we pursued a clarification by investigating three 38- to 56-year-old Norway spruce forests used for silvopasture. Two types of injuries were observed on exposed roots: bark cracks characterized by resin exudation, and injuries involving localized bark peeling and exposure of the underlying wood. These injuries occurred up to 250 cm away from the root collar, with the sector 50–150 cm away from the root collar showing the highest incidence of injuries. In two of the forest stands, wood within the injured root areas was primarily colonized by the wound parasite Corinectria fuckeliana or species of the order Helotiales, fungi that do not cause wood decay. Wood colonization of injured roots by Heterobasidion species, the most frequent wood decay fungi of Norway spruce, was common in the third stand, but only in a few cases it was possible to deduce that the colonization had probably initiated via trampling injuries on roots. In a few cases, an injury was located at stem base at the root collar height along paths used by animals, and in such cases, it was obvious that stem colonization by Heterobasidion species had initiated via the wound. The relatively small amount of data warrants caution when drawing conclusions. Considering the high establishment frequency of decay via stem bark wounds of Norway spruce observed in previous studies, our data would suggest that roots are generally better equipped to defend themselves upon infliction of superficial wounds than stem of this tree species. The likelihood of trampling injuries leading to decay may vary considerably between different stands, this presumably depending on the level of local propagule pressure by pathogenic wood decay fungi and the frequency of damages close to root collar.

2023

To document

Abstract

Native livestock breeds are part of the history of the Nordic people and comprise a resource for future food production. In this study, net gain and carcass characteristics of two Danish, three Finnish, one Icelandic, six Norwegian and five Swedish native cattle breeds were retrieved and compared to commercial breeds: two beef breeds and two dairy breeds. Breed data were collected from national databases and sorted into six animal categories: young bull, bull, steer, heifer, young cow and cow, for which means and standard deviations were calculated within each country. The native breeds ranged from small-sized milking type breeds with low net gain, carcass weights and EUROP classification to larger multipurpose breeds with high net gains, carcass weights and EUROP classification. All Finnish and most of the Norwegian and Swedish native breeds had lower net gain and carcass weight than the dairy breeds in the same category and country, but with similar carcass conformation and fatness scores. The two Danish native breeds had higher net gain, carcass weight and conformation class than the reference dairy breed, but lower than the reference beef breeds. The net gain and carcass traits of the Icelandic native breed were similar to the smallest-sized native breeds from the other countries. The carcass traits of the native breeds indicate that they have comparative advantages in an extensive production system based on forage and marginal grasslands. They may also succeed better in the value-added markets than in mainstream beef production.

Abstract

This is the story of the local Norwegian cattle breeds that no longer are categorized as critically endangered. A pedigree database adjusted to the breeds’ needs and close cooperation between farmers, breeding organisations and public authorities are key elements in this success story.