Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2025
Abstract
Chocolate spot (CS), caused by Botrytis fabae, is one of the most destructive fungaldiseases affecting faba bean (Vicia faba L.) globally. This study evaluated 33 fababean cultivars across two locations and over 2 years to assess genetic resistance andthe effect of fungicide application on CS progression. The utility of unmanned aerialvehicle–mounted multispectral camera for disease monitoring was examined. Signif-icant variability was observed in cultivar susceptibility, with Bolivia exhibiting thehighest level of resistance and Louhi, Sampo, Vire, Merlin, Mistral, and GL Sunriseproving highly susceptible. Fungicide application significantly reduced CS severityand improved yield. Analysis of canopy spectral signatures revealed the near-infraredand red edge bands, along with enhanced vegetation index (EVI) and soil adjustedvegetation index, as most sensitive to CS infection, and they had a strong negativecorrelation with CS severity ranging from −0.51 to −0.71. In addition, EVI enabledearly disease detection in the field. Support vector machine accurately classified CSseverity into four classes (resistant, moderately resistant, moderately susceptible, andsusceptible) based on spectral data with higher accuracy after the onset of diseasecompared to later in the season (accuracy 0.75–0.90). This research underscores thevalue of integrating resistant germplasm, sound agronomic practices, and spectralmonitoring for effectively identification and managing CS disease in faba bean
Authors
Emmanuel O. Anedo Dennis Beesigamukama Benson Mochoge Nicholas K. Korir Solveig Haukeland Xavier Cheseto Moses Nyongesa Patrick Pwaipwai Sevgan Subramanian Abdou Tenkouano Betty Kibaara Chrysantus M. TangaAbstract
No abstract has been registered
Authors
Daniel Flø Johan A. Stenberg Lawrence Richard Kirkendall Anders Nielsen Selamawit Tekle Gobena Jorunn Børve Paal Krokene Christer Magnusson Mogens Nicolaisen Line Nybakken Iben Magrete Thomsen May-Guri Sæthre Sandra A.I. WrightAbstract
It is highly unlikely that Anagyrus vladimiri will be able to establish or spread in Norway. There are no native host organisms, and winter temperatures are too low. Therefore, it is likely that the parasitic wasp will not affect local biodiversity. Thus concludes the Norwegian Scientific Committee for Food and Environment (VKM). Background VKM has assessed the environmental risk of using the product Citripar in Norway. The risk assessment was carried out at the request of the Norwegian Food Safety Authority. Citripar, a product for biological control, is being sought for approval for use in Norway. The product contains the parasitic wasp Anagyrus vladimiri and is intended to be used against mealybugs, especially the species Planococcus citri and P. ficus, on fruits, berries, vegetables, and herbs in greenhouses and plastic tunnels, as well as on indoor plants. Conclusions There have been no reported observations of Anagyrus vladimiri in Norway. VKM assesses that Anagyrus vladimiri will not be able to establish and spread in Norway under current conditions. Anagyrus vladimiri will have no effect on biological diversity in Norway, as there are no known native host organisms that the wasp can parasitize. Individuals of what is now known as Anagyrus vladimiri were for many years identified as belonging to the species Anagyrus pseudococci. Anagyrus pseudococci and A. vladimiri belong to a complex of species that are almost impossible to distinguish from each other and are informally referred to as the Anagyrus pseudococci complex. The risk assessment is approved by VKM's Panel on Plant Health.
2024
Abstract
No abstract has been registered
Authors
Ingeborg Klingen Nils Bjugstad Therese With Berge Krzysztof Kusnierek Hans Wilhelm Wedel-Jarlsberg Roger Holten Anette Sundbye Lene Sigsgaard Håvard Eikemo Kirsten Tørresen Valborg KvakkestadAbstract
Droner til bruk i plantevern i jord- og hagebruk er relativt nytt og i dette forprosjektet ønsket vi å etablere et kunnskapsgrunnlag for bærekraftig bruk av droner i norsk plantevern. Vi gjorde dette ved å: 1) Systematisere kunnskap om avdrift fra plantevernmidler fra sprøytedroner, 2) Gjennomføre et pilotstudie på en metode for å måle avdrift og avsetning av plantevernmidler utenfor målområdet fra sprøyte droner, 3) Skaffe kunnskap om eksponering av dronepilot for plantevernmidler, 4) Skaffe kunnskap om miljøeksponering inkludert rester av plantevernmidler i drone-sprøytede plantekulturer, 5) Skaffe kunnskap om bruk av droner i presis påføring av plantevernmidler, lavrisikostoffer og biologiske kontrollorganismer, 6) Øke vår kunnskap om forskrifter og standarder som kan påvirke bruken av droner i integrert plantevern i Norge. Basert på kunnskap gjort tilgjengelig i dette forprosjektet, foreslår vi videre studier som er nødvendig å utføre for å kunne bruke droner i integrert plantevern på en smart måte. Vårt håp er at resultatene fra dette forprosjektet vil gjøre det mulig å ta beslutninger om hvordan droner bør brukes i plantevern i Norge for å være i tråd med direktivet for bærekraftig bruk av plantevernmidler (Direktiv 2009/128/EF). Det er spesielt målgrupper som bønder, landbruksrådgivningstjenester, agroindustri, forskere, nasjonale statlige organer som Mattilsynet og lovgivere som kan tenkes å ha nytte av å lese denne rapporten.
Authors
May Bente Brurberg Anupam Gogoi Nina Elisabeth Nagy Mandeep Poudel Andre van Eerde Jahn DavikAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Simeon Rossmann Paulina Paluchowska Zhimin Yin Erik Lysøe Mirella Ludwiczewska Marta Janiszewska Sylwester Sobkowiak Håvard Eikemo Monica Skogen Jadwiga Śliwka May Bente BrurbergAbstract
No abstract has been registered
Authors
Simeon Rossmann Erik Lysøe Monica Skogen Håvard Eikemo Marta Janiszewska Mirella Ludwiczewska Sylwester Sobkowiak Jadwiga Śliwka May Bente BrurbergAbstract
No abstract has been registered
Authors
Zhibo Hamborg Ada Konstanse Kristensen Xiaoyan Ma Sissel Haugslien Carl-Henrik Lensjø Alvin Peter van der Ende Øyvor Stensbøl Qiaochun Wang Jana Fránová Dag-Ragnar BlystadAbstract
Background of the study – Cryopreservation is considered to be a valuable method for long-term preservation of plant germplasm and recently it has been shown to be a reliable method for preserving obligate pathogens including plant viruses. Objectives – (1) Droplet-vitrification cryopreservation of strawberry genotypes in Norway; (2) Preservation efficiency of aphid-transmitted strawberry mild yellow edge virus (SMYEV) and strawberry vein banding virus (SVBV) following cryopreservation. Methods – Excised shoot tips of cv. ‘Korona’ were cryopreserved with different durations of PVS2 varying from 10 to 60 min, whereas virus-infected shoot tips were cryopreserved using either 10, 40 or 60 min of PVS2. Results – The results showed that 40–60 minutes of PVS2 treatment was more efficient for preserving strawberry germplasm than lower duration times (10–30 min). Thirty-two strawberry genotypes have been successfully cryopreserved through droplet-vitrification with regeneration rates ranging from 45% to 100% with 40 min PVS2 treatment. Cryopreserved viruses were quantitatively analyzed by Reverse Transcription-quantitative polymerase chain reaction (RT-qPCR). SVBV was successfully cryopreserved in all the regenerated shoots following cryopreservation with all the three durations of PVS2 examined. SMYEV, however, was more efficiently preserved in shoot tips exposed to 40 min (90%) of PVS2, in comparison to 60 min (33%). Conclusion – This demonstrates that SMYEV and SVBV can be successfully cryopreserved in living cells of Fragaria ssp. by droplet vitrification. The results indicate that cryopreservation has great potential for long-time preservation of both strawberry germplasm and aphid-transmitted strawberry-infecting viruses.