Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2023
Abstract
There is an increased interest in the hydroponic production of strawberries in protected cultivation systems, and it is, therefore, urgent to develop new, more sustainable growing media alternatives. This study investigated the physical properties of wood fiber produced from Norway spruce (Picea abies (L.) H. Karst.) and peat:wood fiber substrate blends as well as the performance of the wood fiber in comparison to the industry standards, i.e., peat and coconut coir in the cultivation of hydroponic strawberry. Tray plants of the June-bearing strawberry (Fragaria × ananassa Duch.) cultivar ‘Malling Centenary’ were transplanted into five different growing media: a peat (80%) and perlite (20%) mixture, stand-alone (100%) coconut coir and three stand-alone (100%) Norway spruce wood fiber substrates (including coarse textured fibers with compact and loose packing density and compacted fine-textured fibers). Ripe strawberries were harvested and registered throughout the production season. The overall marketable yield was comparable across all the tested growing media; however, after 4 weeks of harvest, both coarse wood fiber and fine wood fiber showed better fruiting performance than the peat-perlite mixture. A trend for earlier berry maturation was observed for all wood fiber-based substrates. Plant parameters recorded after the end of production showed that plant height, number of leaves, and biomass production were higher in coarse wood fiber than in the peat-perlite mixture. Moreover, plants grown in wood fiber-based substrates had less unripe berries and flowers not harvested in comparison to both the peat and coir treatments.
Authors
Siv Mari Aurdal Tomasz Leszek Woznicki Trond Haraldsen Krzysztof Kusnierek Anita Sønsteby Siv Fagertun RembergAbstract
Cultivation of strawberries in greenhouses and polytunnels is increasing, and new sustainable growing media are needed to replace peat and coconut coir. This study investigated the effect of wood fiber and compost as growing media on hydroponically cultivated strawberries. Two experiments were conducted, where the everbearing cultivar ‘Murano’ was grown in mixtures of wood fiber and compost (Experiment 1) and the seasonal flowering cultivar ‘Malling Centenary’ was grown in mixtures of wood fiber and peat (Experiment 2). Additionally, in Experiment 2, the effect of adding start fertilizer was assessed. The yield potential of ‘Murano’ plants was maintained in all substrates compared to the coconut coir control. However, a mixture of 75% wood fiber and 25% compost produced the highest yield, suggesting that mixtures of nutritious materials with wood fiber may improve plant performance. The chemical composition of the berries was not affected by the substrate composition; however, berries from plants grown in the best performing blend had a lower firmness than those grown in coconut coir. ‘Malling Centenary’ plants produced higher yields in substrates enriched with start fertilizer. Generally, the productivity of ‘Malling Centenary’ plants was maintained in blends containing up to 75% of wood fiber mixture even without start fertilizer.
Authors
Jian LiuAbstract
No abstract has been registered
Authors
Divina Gracia P. RodriguezAbstract
No abstract has been registered
Authors
Divina Gracia P. RodriguezAbstract
No abstract has been registered
Authors
Kristoffer Herland Hellton Helga Amdahl Thordis Thorarinsdottir Muath K Alsheikh Trygve S. Aamlid Marit Jørgensen Sigridur Dalmannsdottir Odd Arne RognliAbstract
The perennial forage grass timothy (Phleum pratense L.) is the most important forage crop in Norway. Future changes in the climate will affect growing conditions and hence the yield output. We used data from the Norwegian Value for Cultivation and Use testing to find a statistical prediction model for total dry matter yield (DMY) based on agro-climatic variables. The statistical model selection found that the predictors with the highest predictive power were growing degree days (GDD) in July and the number of days with rain (>1mm) in June–July. These predictors together explained 43% of the variability in total DMY. Further, the prediction model was combined with a range of climate ensembles (RCP4.5) to project DMY of timothy for the decades 2050–2059 and 2090–2099 at 8 locations in Norway. Our projections forecast that DMY of today’s timothy varieties may decrease substantially in South-Eastern Norway, but increase in Northern Norway, by the middle of the century, due to increased temperatures and changing precipitation patterns.
Authors
Durairaj Karthick Rajan Kannan Mohan Jayakumar Rajarajeswaran Dharmaraj Divya Ragavendhar Kumar Sabariswaran Kandasamy Shubing Zhang Abirami Ramu GanesanAbstract
The marine food-processing industries were producing large quantities of shell wastes as a discard. Currently, this waste material was underutilized and leads to the landfill as a significant environmental issue. The outer shells or exoskeletons of mollusks serve as the best source of chitin. Three different allomorphs of chitin (γ, β, and γ) were extracted from different species of crustaceans, mollusks, and fungi. β-Allomorphs predominantly exist in the shells of mollusks. β-Chitin and its deacetylated product chitosan has been utilized for its special characteristic features, including biocompatibility, environmental friendly, and nontoxic properties. The extraction of β-chitin and chitosan from the mollusk shell waste were evaluated in this work. Hence, this review aims to explore edible mollusk shell waste sources and its suitable extraction techniques, characterizations, and functional properties of mollusk-based β-chitin and chitosan. Further, the genetic pathway of synthesizing mollusk chitin was discussed. The entire life cycle assessment with techno-economic aspects were extrapolated to study the bottlenecks and tangible solution for the industrial upscaling of obtaining β-chitin and chitosan from the edible mollusk shell waste have been reviewed herein.
2022
Authors
Marta Vergarechea Rasmus Astrup Clemens Blattert Astor Toraño Caicoya Daniel Burgas Mikko Monkkonen Kyle Eyvindson Fulvio Di Fulvio Knut Øistad Jani Lukkarinen Antón-Fernández ClaraAbstract
No abstract has been registered
Authors
Trygve S. AamlidAbstract
No abstract has been registered
Authors
Jahn Davik Dag Røen Erik Lysøe Matteo Buti Simeon Rossmann Muath K Alsheikh Erez Lieberman Aiden Olga Dudchenko Daniel James SargentAbstract
Rubus idaeus L. (red raspberry), is a perennial woody plant species of the Rosaceae family that is widely cultivated in the temperate regions of world and is thus an economically important soft fruit species. It is prized for its flavour and aroma, as well as a high content of healthful compounds such as vitamins and antioxidants. Breeding programs exist globally for red raspberry, but variety development is a long and challenging process. Genomic and molecular tools for red raspberry are valuable resources for breeding. Here, a chromosome-length genome sequence assembly and related gene predictions for the red raspberry cultivar ‘Anitra’ are presented, comprising PacBio long read sequencing scaffolded using Hi-C sequence data. The assembled genome sequence totalled 291.7 Mbp, with 247.5 Mbp (84.8%) incorporated into seven sequencing scaffolds with an average length of 35.4 Mbp. A total of 39,448 protein-coding genes were predicted, 75% of which were functionally annotated. The seven chromosome scaffolds were anchored to a previously published genetic linkage map with a high degree of synteny and comparisons to genomes of closely related species within the Rosoideae revealed chromosome-scale rearrangements that have occurred over relatively short evolutionary periods. A chromosome-level genomic sequence of R. idaeus will be a valuable resource for the knowledge of its genome structure and function in red raspberry and will be a useful and important resource for researchers and plant breeders.