Anupam Gogoi
Research Scientist
Abstract
The soil-borne oomycete Phytophthora cactorum causes crown rot, a major disease of the allo-octoploid strawberry (Fragaria × ananassa Duch., 2n = 8× = 56) that limits cultivation worldwide. Resistance to P. cactorum is a highly desirable trait but is typically quantitative and moderately heritable. A better understanding of the genetic basis of resistance to crown rot is essential for developing durable crown rot-resistant cultivars. We conducted a genome-wide association study (GWAS) using multi-locus models on 100 wild strawberry accessions from South and North America. The accessions were genotyped using the Axiom™ 50 K strawberry SNP array and mapped to the F. × ananassa cv. Royal Royce v. 1.0 reference genome. Testing for resistance to P. cactorum revealed a wide range of phenotypes. A single genetic marker, AX-184528282, located on chromosome 7B, was strongly associated with resistance to P. cactorum and explained 53% of the observed phenotypic variation. This marker was present in several highly resistant exotic Fragaria accessions that represent potential donors for introgression of favorable alleles into modern strawberry cultivars. In addition, several strong candidate resistance genes were identified within the 2 Mb genomic region surrounding the significant marker. This study advances understanding of resistance to P. cactorum in strawberry and identifies genetic resources that can accelerate the development of crown rot-resistant cultivars through marker-assisted breeding.
Authors
Anupam GogoiAbstract
No abstract has been registered
Abstract
No abstract has been registered