Jeg begynte som forsker i NIBIO/Bioforsk i 2014 med arbeidsområde bruk av organiske restprodukter som gjødel og jordforbedring og carbon og næringsstoff syklus i plante-jord-atmosfære-systemet. Jeg har mastergrad fra Universitetet i Oslo og Ph.D i Agroøkologi fra København. Jeg har arbeidet i Storbritannia og USA med forskning på næringsstoff syklus og nedbryningsprosesser, karbonlagring og drivhusgassutslipp fra jord. Jeg har også erfaring fra modellering av prosessene.

Les mer
Til dokument


In this work, experimental and modelling investigations were conducted on biochars pyrolyzed at 350 °C and 600 °C, to determine the effect of pyrolysis temperature, hydrogen peroxide activation and pH on copper and zinc removal, in comparison with commercially available activated carbons. Characterization of biochars was performed by BET surface area, elemental analysis and FTIR spectroscopy. Experiments results demonstrated that biochar pyrolyzed at 600 °C adsorbed both copper and zinc more efficiently than biochar pyrolyzed at 350 °C. Chemical activation by H2O2 increased the removal capacity of biochar pyrolyzed at 350 °C. All investigated biochars showed a stronger affinity for copper retention, with a maximum adsorption capacity of 15.7 mg/g while zinc was 10.4 mg/g. The best adsorption performances were obtained at pH 5 and 6. Langmuir adsorption isotherm described copper adsorption process satisfactorily, while zinc adsorption was better described by Freundlich isotherm.


Phosphorus (P) should be recycled from organic wastes as much as possible, and input is needed in stockless organic agriculture. Seven organic residues were assessed and compared them to mineral P fertilizer and rock phosphate as fertilizer for barley. P availability in the mixtures and residual P availability were also assessed by diffusive gradients in thin films (DGT). The best availability was found in digested liquid manure followed by wood ash, fish sludge, composted solid manure and composted food waste. Meat and bone meal, the commercially available product Ladybug plus and rock phosphate had low P availability at the same level as no P. Only wood ash had significant P available for the next crop. The pH level of the soil did not affect P availability for any of the P sources. DGT predicted P availability moderately well, as it measures P supply over a short period without any biological factors.

Til dokument


Exposure to sunshine is known to play a role in litter decomposition in some semi-arid areas. The aim of this study was to find out if it also plays a role in higher latitude environments in peat litter decomposition and could contribute to an explanation to the patchy nature of peat litter decomposition. Peat litter from 5 microenvironments (top of slope, bottom of slope, ridge, ryam and hollow) and put out and exposed to the sun or shaded over a summer in Western Siberia, 26 km west of the town of Khanty-Mansiysk. Afterwards the peat litter was incubated in the laboratory - at field capacity or submerged in peat water - and CO2 and methane emission measured. Chemical composition of exposed and control peat litter was also investigated using stepwise extraction. The results indicate that exposure to sunlight does increase subsequent decomposition rate in most peat litters when incubated at field capacity, but the difference between the treatments levelled off at the end of the 2 weeks incubation in most peat litter types. The total extra carbon loss was calculated to be up to about 2 mg C m− 2 over a season. When incubated submerged previous photo-exposure had less effect on CO2 evolution then when incubated at field capacity. No methane emission was recorded in any treatment. Some differences in chemical composition between exposed and shaded peat litters were found that could help explain the differences in subsequent decomposition rate. The results indicate that photodegradation could play a role in peat litter decomposition at higher latitudes when peat is disturbed and exposed to sunshine. However, the effect of photo-exposure in these areas is much smaller than observed in semi-arid areas at lower latitudes.


Soil cores from a field growing barley and barley mutants without root hairs under conventional and minimum tillage were sampled. They were X-ray scanned to produce a 3D image and then the roots were washed out and weight and length were determined by conventional means. Root volume and surface area were then calculated from the 3D images using state of the art software and methodology, and the measured and calculated measures were correlated. The only strong and significant correlation was between measured weight and calculated volume for mutants without root hairs. It is concluded that the software cannot segment out very small roots, but segmentation accuracy also depends on root structure in some unknown way. Any study using X-ray computed tomography to quantify roots as they grow in situ should start with a calibration for the conditions in question.


Divisjon for miljø og naturressurser

Greenhouse gas emissions from biogas digestate applications to rice production systems

Digestate, organic residues from biogas production, are good fertilizers. However, application of digestate can stimulate greenhouse gas production. Greenhouse gas emission from rice production is particularly problematic, because rice is grown flooded. This project, RICEDIG aims to find how digestate application affect greenhouse gas emissions in flooded rice production systems.

Active Updated: 14.11.2018
End: sep 2021
Start: okt 2018