Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2019

To document

Abstract

Hay-making structures are part of the agricultural landscape of meadows and pastures. Hay meadows are still used and found all over Europe, but their distribution patterns as well as their characteristics and regional features depend on geographical area, climate, culture, and intensity of agriculture. Intensively used hay meadows are the most dominant, using heavy machinery to store hay mostly as rounded or square bales. Traditional hay-making structures represent structures or constructions, used to quickly dry freshly cut fodder and to protect it from humidity. The ‘ancient’ forms of traditional hay-making structures are becoming a relic, due to mechanisation and the use of new technologies. Both the need for drying hay and the traditional methods for doing so were similar across Europe. Our study of hay-making structures focuses on their current state, their development and history, current use and cultural values in various European countries. Regarding the construction and use of hay-making structures, we have distinguished three different types, which correlate to natural and regional conditions: (1) temporary hay racks of various shapes; (2) hay barracks, a special type of shelters for storing hay and (3) different types of permanent construction and buildings for drying and storing hay. Hay-making structures have been mostly preserved in connection with traditional agricultural landscapes, and particularly in the more remote regions or where associated with strong cultural identity.

Abstract

The “Arctic peas” project Climate changes expected in the near future will result in higher temperatures and longer growing season at high latitudes. This might open up for possibilities for pea production in Arctic and northern areas, and the need for cultivars more adapted to northern conditions is likely to increase. At NordGen - a common genebank for all the Nordic countries - a large number of Nordic pea accessions are conserved, including both cultivars, landraces and breeding material. Does this material hold keys to the future? The ongoing Nordic cooperation research project «Arctic peas» aims to identify germplasm of peas well adapted either for breeding or immediate cultivation in the Arctic/Nordic regions. The project evaluates important traits in 50 selected accessions from NordGen in field trials at four contrasting Nordic locations, at latitudes ranging from 55° to 69° N (see map). Among the evaluated traits are flowering time, maturation time and yield, as well as protein content. Will the genetic material show different expressions at locations with clear distinction in daylength, temperature and climate? The project also aims to increase the knowledge and use of the Nordic pea accessions conserved at NordGen, and strengthen the collaboration between companies, organizations and researchers in the Nordic countries.

Abstract

For plum production to be economically viable, dwarfing rootstocks are essential for establishing high-density orchards, which ensure easier management, lower production costs, and earlier yields. Performance of the semi-dwarfing plum rootstocks ‘Wavit’, ‘Ute’ (both clones of Prunus domestica), and the dwarfing ‘VVA-1’ (Krymsk®1) was compared against the industry standard, ‘St. Julien A’. Onto these rootstocks, scion cultivars ‘Excalibur’, ‘Reeves’, and ‘Valor’ were grafted and assessed in a replicated field trial in western Norway at 60° North. Trees were planted in spring 2006 and the ‘VVA-1’ rootstock in May 2007. Plants were all one-year-old whips, spaced 2.0×4.0 m apart and trained to a central leader as free spindles. Tree vigour, yield, fruit size, fruit quality, and yield efficiency were evaluated for eight subsequent years. Tree size was significantly influenced by the rootstock after eight years of growth. ‘VVA-1’ produced the smallest trees, about half the tree size of ‘St. Julien A’ as measured by trunk cross-sectional area. ‘Wavit’ and ‘Ute’ were similar in size to ‘St. Julien A’. All plum trees came into production slowly. On average the cultivars ‘Excalibur’ and ‘Reeves’ were harvested in mid-September and ‘Valor’ two weeks later. During the period 2011-2014, when trees were fully mature, ‘Reeves’ and ‘Valor’ grafted on the three semi-dwarfing rootstocks resulted in the highest yields tree-1. ‘VVA-1’ resulted in significantly lower yields for ‘Valor’. ‘Excalibur’ was the only cultivar in which ‘VVA-1’ significantly increased yield efficiency. Accumulated yield from 2011-2015 on ‘VVA-1’ was 0.52 kg cm-2 TCSA, 2.3 times more than on ‘St Julien A’. Fruit weight in ‘Excalibur’ and ‘Reeves’ was on average 57 and 62 g, respectively, and not affected by the different rootstocks. ‘Valor’ on ‘VVA-1’ showed a 10 g reduction in fruit weight compared to 59 g fruit weight on the other rootstocks. Fruit soluble solids were on average around 13 °Brix for ‘Excalibur’ and ‘Reeves’ and 16 °Brix for ‘Valor’ and did not differ significantly between trees on the different rootstocks tested. In conclusion, ‘St. Julien A’ was the most reliable semi-vigorous rootstock and resulted in the highest accumulated yields over the first eight years after planting and with favourable effects on fruit quality of all European plum cultivars evaluated. ‘VVA-1’ resulted in trees of low vigour which, especially with ‘Excalibur’, were more precocious and had higher yield efficiencies than all other rootstock scion combinations. If this rootstock is to be used it should be planted at a higher density per area than the semi-dwarfing rootstocks and on fertile soil with fertigation provided.