Kristin Daugstad

Research Scientist

(+47) 406 22 927
kristin.daugstad@nibio.no

Place
Løken

Visiting address
Nyhagevegen 35, 2940 Heggenes

To document

Abstract

The aim of the study was to explore whether and how intensification would contribute to more environmentally friendly dairy production in Norway. Three typical farms were envisaged, representing intensive production strategies with regard to milk yield both per cow and per hectare in the three most important regions for dairy production in Norway. The scores on six impact categories for produced milk and meat were compared with corresponding scores obtained with a medium production intensity at a base case farm. Further, six scenario farms were derived from the base case. They were either intensified or made more extensive with regard to management practices that were likely to be varied and implemented under northern temperate conditions. The practices covered the proportion and composition of concentrates in animal diets and the production and feeding of forages with different energy concentration. Processes from cradle to farm gate were incorporated in the assessments, including on-farm activities, capital goods, machinery and production inputs. Compared to milk produced in a base case with an annual yield of 7250 kg energy corrected milk (ECM) per cow, milk from farms with yields of 9000 kg ECM or higher, scored better in terms of global warming potential (GWP). The milk from intensive farms scored more favourably also for terrestrial acidification (TA), fossil depletion (FD) and freshwater eutrophication (FE). However, this was not in all cases directly related to animal yield, but rather to lower burden from forage production. Production of high yields of energy-rich forage contributed substantially to the better scores on farms with higher-yielding animals. The ranking of farms according to score on agricultural land occupation (ALO) depended upon assumptions set for land use in the production of concentrate ingredients. When the Ecoinvent procedure of weighting according to the length of the cropping period was applied, milk and meat produced on diets with a high proportion of concentrates, scored better than milk and meat based on a diet dominated by forages. With regards to terrestrial ecotoxicity (TE), the score was mainly a function of the amount of concentrates fed per functional unit produced, and not of animal yield per se. Overall, the results indicated that an intensification of dairy production by means of higher yields per animal would contribute to more environment-friendly production. For GWP this was also the case when higher yields per head also resulted in higher milk yields and higher N inputs per area of land.

To document

Abstract

The present report outlines the processes and lists the data invented in a Life Cycle Assessment (LCA) of milk and meat produced at three modeled Norwegian dairy farms. The modeled farms represents typical dairy farms of average size and production intensity located in the three most important milk and beef production counties of Norway, i.e. Rogaland, Nord-Trøndelag and Oppland. Information on management and yields was collected from available statistics, results from recent research as well as informal interviews of farmers and supervisors in farmers extension services. Descriptions and data on buildings, machinery and equipment, consumption of diesel and oil, fertilizer, lime, seeds, pesticides, fences, polyethylene and additives for silage production, detergents, medicines, sawdust, cow matrasses, forages, concentrates and mineral supplement are given. Transport distances of major inputs (i.e. fertilizers, lime, feed concentrates, sawdust, and health care service) to the farm are also included. All data presented are on an annual basis at farm

To document

Abstract

Background and aims: White clover (Trifolium repens) is an important component of sustainable livestock systems around the world. Its exploitation for agriculture in the northern, marginal areas, is, however, currently limited by the lack of cultivars that combine persistence and high production potential. The aims are to investigate whether it is feasible to create breeding material of white clover for these areas by combining winter hardiness of northerly populations with good yielding ability of more southerly cultivars. Methods: A total of 166 crosses of 14 different parental combinations between winter-hardy, low-yielding populations of northern origin and high-yielding commercial cultivars of more southerly origin were tested under field conditions in Iceland and Norway and the parental combinations were compared in Norway. Spaced plants were transplanted into a smooth meadow grass (Poa pratensis) sward. Dry matter yield was estimated for 2 years after planting in Norway and morphological characters associated with yielding capacity were measured at both sites. Key results: The results showed that southerly cultivars had larger leaves and higher yielding potential than northern types but suffered more winter damage. Significant variation was found between full-sib families within the different parental combinations for all morphological characteristics measured in all three trials. However, it was difficult to detect any consistens morphological patterns between progeny groups across trial sites. No significant correlations were found between leaflet area and survival. Conclusions: The present study has confirmed that it should be possible to simultaneously select for good winter survival and larger leaves and, hence, higher yielding ability under marginal conditions.