Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

To document

Abstract

Insect outbreaks in northern-boreal forests are expected to intensify owing to climate warming, but our understanding of direct and cascading impacts of insect outbreaks on forest ecosystem functioning is deficient. The duration and severity of outbreaks by geometrid moths in northern Fennoscandian mountain birch forests have been shown to be accentuated by a recent climatemediated range expansion, in particular of winter moth (Operophtera brumata). Here, we assess the effect of moth outbreak severity, quantified from satellite-based defoliation maps, on the state of understory vegetation and the abundance of key vertebrate herbivores in mountain birch forest in northern Norway. We show that the most recent moth outbreak caused a regional-scale state change to the understory vegetation, mainly due to a shift in dominance from the allelopathic and unpalatable dwarf-shrub Empetrum nigrum to the productive and palatable grass Avenella flexuosa. Both these central understory plant species responded significantly and nonlinearly to increasing outbreak severity. We further provide evidence that the effects of the outbreak on understory vegetation cascaded to cause strong but opposite impacts on the abundance of the two most common herbivore groups. Rodents increased with defoliation, largely mirroring the increase in A. flexuosa, whereas ungulate abundance instead showed a decreasing trend. Our analyses also suggest that the response of understory vegetation to defoliation may depend on the initial state of the forest, with poorer forest types potentially allowing stronger responses to defoliation

Abstract

Norway has the world’s largest facility for testing and improving CO2 capture. The aim of carbon capture technology is to minimize greenhouse gas emissions through a reaction between amines and effluents from gas power plants. During the overall process of CO2 capture, amines and their transformation products might escape to the environment through emissions, leakage, and as solid waste. The two main groups of transformation products with the most potential to cause environmental harm have been identified as nitrosamines and nitramines, both of which are considered to be carcinogenic. Recent theoretical modelling as well as laboratory experiments have found nitramine compounds, 2-nitroaminoethanol (CAS: 74386-82-6) and dimethylnitramine (CAS: 4164-28-7) to be present. However, despite the likelihood of these compounds increasing in the environment, no environmental toxicity data for these compounds currently exist. The aim of this project was to provide an environmental risk assessment for the selected nitramine compounds taking into account the key trophic groups within freshwater, marine and terrestrial environments. The toxicity assessment was made using a suite of standardised bioassays for the measure of acute and chronic toxicity. In the soil environment, the most potent compound was 2-nitroaminoethanol, which impaired the reproduction of earthworms and the seedling emergence of sunflower and ryegrass. The opposite was found in the aquatic environment, with freshwater and marine species consistently more affected by dimethylnitramine. All the tested freshwater species were more sensitive to nitramines than marine species. The selected amines were not acutely toxic to aquatic and soil species, with EC50 in the mg/L range. Both nitramines increased the nitrogen and carbon transformation activity of soil microorganisms.