Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Authors
Jonathan Rizzi Irene Brox Nilsen James Howard Stagge Kjersti Gleditsch Gisnås Lena M. TallaksenAbstract
Northern latitudes are experiencing faster warming than other regions in the world, which is partly explained by the snow albedo feedback. In Norway, mean temperatures have been increasing since the 1990s, with 2014 being the warmest year on record, 2.2 °C above normal (1961–1990). At the same time, a concurrent reduction in the land area covered by snow has been reported. In this study, we present a detailed spatial and temporal (monthly and seasonal) analysis of trends and changes in snow indices based on a high resolution (1 km) gridded hydro-meteorological dataset for Norway (seNorge). During the period 1961–2010, snow cover extent (SCE) was found to decrease, notably at the end of the snow season, with a corresponding decrease in snow water equivalent except at high elevations. SCE for all Norway decreased by more than 20,000 km2 (6% of the land area) between the periods 1961–1990 and 1981–2010, mainly north of 63° N. Overall, air temperature increased in all seasons, with the highest increase in spring (particularly in April) and winter. Mean monthly air temperatures were significantly correlated with the monthly SCE, suggesting a positive land–atmosphere feedback enhancing warming in winter and spring.
Authors
Gesine Schmidt Kristine S. Myhrer Ingunn M. Vågen Gerd Guren Elin Merete Wetterhus Silje Johansen John-Erik Haugen Paula Varela Grethe Iren Andersen BorgeAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
U Vogler R Collier A-M Cortesero M Gaffney M Hommes Tor J. Johansen Richard Meadow N Meyling S Trdan D MazziAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Ivar PettersenAbstract
No abstract has been registered
Authors
Sjur Spildo PrestegardAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Uganda designated 16% of its land as Protected Area (PA). The original goal was natural resources, habitat and biodiversity conservation. However, PAs also offer great potential for carbon conservation in the context of climate change mitigation. Drawing on a wall-to-wall map of forest carbon change for the entire Uganda, that was developed using two Digital Elevation Model (DEM) datasets for the period 2000–2012, we (1) quantified forest carbon gain and loss within 713 PAs and their external buffer zones, (2) tested variations in forest carbon change among management categories, and (3) evaluated the effectiveness of PAs and the prevalence of local leakage in terms of forest carbon. The net annual forest carbon gain in PAs of Uganda was 0.22 ± 1.36 t/ha, but a significant proportion (63%) of the PAs exhibited a net carbon loss. Further, carbon gain and loss varied significantly among management categories. About 37% of the PAs were “effective”, i.e., gained or at least maintained forest carbon during the period. Nevertheless, carbon losses in the external buffer zones of those effective PAs significantly contrast with carbon gains inside of the PA boundaries, providing evidence of leakage and thus, isolation. The combined carbon losses inside the boundaries of a large number of PAs, together with leakage in external buffer zones suggest that PAs, regardless of the management categories, are threatened by deforestation and forest degradation. If Uganda will have to benefit from carbon conservation from its large number of PAs through climate change mitigation mechanisms such as REDD+, there is an urgent need to look into some of the current PA management approaches, and design protection strategies that account for the surrounding landscapes and communities outside of the PAs.