Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Abstract
Freezing and thawing have large effects on water flow in soils since ice may block a large part of the pore space and thereby prevent infiltration and flow through the soil. This, in turn, may have consequences for contaminant transport. For example, transport of solutes contained at or close to the soil surface can be rapidly transported through frozen soils in large pores that were air filled at the time of freezing. Accounting for freezing and thawing could potentially improve model predictions used for risk assessment of contaminant leaching. A few numerical models of water flow through soil accounts for freezing by coupling Richards’ equation and the heat flow equation using of the generalized Clapeyron equation, which relates the capillary pressure to temperature during phase change. However, these models are not applicable to macroporous soils. The objective of this study was to develop and evaluate a dual-permeability approach for simulating water flow in soil under freezing and thawing conditions. To achieve this we extended the widely used MACRO-model for water flow and solute transport in macroporous soil. Richards’ equation and the heat flow equation were loosely coupled using the Clapeyron equation for the soil micropore domain. In accordance with the original MACRO model, capillary forces were neglected for the macropore domain and conductive heat flow in the macropores was not accounted for. Freezing and thawing of macropore water, hence, were solely governed by heat exchange between the pore domains. This exchange included a first-order heat conduction term depending on the temperature difference between domains and the diffusion pathlength (a proxy variable related to the distance between macropores) and convective heat flow. As far as we know, there are no analytical solutions available for water flow during freezing and thawing and laboratory data is limited for evaluation of water flow through macropores. In order to evaluate the new model approach we therefore first compared simulation results of water flows during freezing for the micropore domain to existing literature data. Our model was shown to give similar results as other available models. We then compared the first-order conductive heat exchange during freezing to a full numerical solution of heat conduction. Finally, simulations were run for water flow through frozen soil with initially air-filled macropores for different boundary conditions. Simulation results were sensitive to parameters governing the heat exchange between pore domains for both test cases.
Authors
Francesca Giannetti Gherardo Chirici Terje Gobakken Erik Næsset Davide Travaglini Stefano PulitiAbstract
No abstract has been registered
Authors
Shinsaku Sasai Keisuke Tamura Motoaki Tojo Maria-Luz Herrero Tamotsu Hoshino Satoshi T. Ohki Tomofumi MochizukiAbstract
We investigated virus infection in the oomycete Pythium polare from the Arctic. From 39 isolates investigated, 14 contained virus-like double-stranded RNA (dsRNA). Next generation sequencing revealed that the P. polare isolate OPU1176 contained three different virus-like sequences. We determined the full-length genome sequence of one of them. The 5397 nt-length genome had two overlapped open reading frames (ORFs) consistent with a toti and toti-like viruses, that we named Pythium polare RNA virus 1 (PpRV1). The ORF2 encoded an RNAdependent RNA polymerase (RdRp). The shifty heptamer motif and RNA pseudoknot were predicted near the stop codon of ORF1, implying that the RdRp could be translated as a fusion protein with the ORF1 protein. Phylogenetic analysis with deduced RdRp amino acid sequences indicated that oomycete virus PpRV1 was closely related to the unclassified arthropod toti-like viruses. The comparison of PpRV1-free and -infected lines suggested that PpRV1 infected in a symptomless manner.
Abstract
No abstract has been registered
Abstract
This paper aimed to investigate the genetic structure (GS) of Scots pine in the northern area of its distribution range by means of seven neutral nuclear microsatellite markers. In particular, the postglacial recolonization of these areas and possible different adaptation patterns in distinct refugia were studied. The GS and diversity were assessed with seven pairs of neutral nuclear microsatellite primers. A high genetic diversity was found in the Scots pine material tested, along with a shallow GS. This pattern is typical for recolonized areas and species with large population sizes, which are connected by pollen-mediated gene flow. A STRUCTURE analysis found two genetic groups to be the most likely, one south-eastern and one north-western group that meet in Fennoscandia. This indicates that Scots pine recolonization of Fennoscandia might have taken place from two different directions (south-west and north-east). Scots pine that recolonized the area originated in at least two different refugia during the last glacial maximum. The glacial survival in distinct refugia can have led to different adaptation patterns and growth optima in the different groups as reflected in the formation of latewood content, where lineage was a significant influencing factor.
Abstract
Root rot in Norway spruce (Picea abies (L.) Karst.) causes substantial economic losses to the forestry sector. In this study, we developed a probability model for decay at breast height utilizing 18,141 increment cores sampled on temporary plots of the Norwegian National Forest Inventory. The final model showed a good fit to the data and retained significant relationships between decay and a suite of tree, stand and site variables, including diameter at breast height, stand age, altitude, growing season temperature sum (threshold 5°C), and vegetation type. By comparing model predictions with recorded decay at stump height in an independent data set, we estimated a proportionality function to adjust for the inherent underestimation of total rot that will be obtained by applying a probability model derived from increment cores sampled at breast height. We conclude that the developed model is appropriate for national and regional scenario analyses in Norway, and could also be useful as a tool for operational forestry planning. This would however require further testing on independent data, to assess how well the new model predicts decay at local scales.
Authors
Alice BudaiAbstract
No abstract has been registered
Authors
Jian Liu Peter J. A. Kleinman Helena Aronsson Don Flaten Richard W. McDowell Marianne Bechmann Douglas B. Beegle Timothy P. Robinson Ray B. Bryant Hongbin Liu Andrew N. Sharpley Tamie L. VeithAbstract
Winter manure application elevates nutrient losses and impairment of water quality as compared to manure applications in other seasons. In conjunction with reviewing global distribution of animal densities, we reviewed worldwide mandatory regulations and voluntary guidelines on efforts to reduce off-site nutrient losses associated with winter manure applications. Most of the developed countries implement regulations or guidelines to restrict winter manure application, which range from a regulative ban to guidelines based upon weather and field management conditions. In contrast, developing countries lack such official directives, despite an increasing animal production industry and concern over water quality. An analysis of five case studies reveals that directives are derived from a common rationale to reduce off-site manure nutrient losses, but they are also affected by local socioeconomic and biophysical considerations. Successful programs combine site-specific management strategies along with expansion of manure storage to offer farmers greater flexibility in winter manure management.
Abstract
No abstract has been registered
Abstract
Climate change could increase fire risk across most of the managed boreal forest. Decreasing this risk by increasing the proportion of broad-leaved tree species is an overlooked mitigation–adaption strategy with multiple benefits.