Attachments

Curriculum Vitae

Biography

Alice Budai studied chemistry and agroecology before completing a PhD in soil science at the Norwegian University of Life Sciences in 2017.  During her PhD, she investigated the effect of pyrolysis temperature on biochar properties, with a special focus on its stability in soil.  Her work focused on the use of biochar as a soil amendment material, and now she is investigating the effect of biochar on processes such as composting.  Her areas of expertise include stable isotope methods, gas measurements during incubation, carbon stability, biochar chemical structure, and soil quality indicators.

Read more
To document

Abstract

Infrared and 13C solid state nuclear magnetic resonance spectroscopies and benzene polycarboxylic acids (BPCA) analysis were used to characterize the structural changes occurring during slow pyrolysis of corncob and Miscanthus at different temperatures from 235 °C to 800 °C. In the case of corncob, a char sample obtained from flash carbonization was also investigated. Spectroscopic techniques gave detailed information on the transformations of the different biomass components, whereas BPCA analysis allowed the amount of aromatic structures present in the different chars and the degree of aromatic condensation to be determined. The results showed that above 500 °C both corncob and Miscanthus give polyaromatic solid residues with similar degree of aromatic condensation but with differences in the structure. On the other hand, at lower temperatures, char composition was observed to depend on the different cellulose/hemicellulose/lignin ratios in the feedstocks. Flash carbonization was found to mainly affect the degree of aromatic condensation.

To document

Abstract

Evaluating biochars for their persistence in soil under field conditions is an important step towards their implementation for carbon sequestration. Current evaluations might be biased because the vast majority of studies are short-term laboratory incubations of biochars produced in laboratory-scale pyrolyzers. Here our objective was to investigate the stability of a biochar produced with a medium-scale pyrolyzer, first through laboratory characterization and stability tests and then through field experiment. We also aimed at relating properties of this medium-scale biochar to that of a laboratory-made biochar with the same feedstock. Biochars were made of Miscanthus biomass for isotopic C-tracing purposes and produced at temperatures between 600 and 700°C. The aromaticity and degree of condensation of aromatic rings of the medium-scale biochar was high, as was its resistance to chemical oxidation. In a 90-day laboratory incubation, cumulative mineralization was 0.1% for the medium-scale biochar vs. 45% for the Miscanthus feedstock, pointing to the absence of labile C pool in the biochar. These stability results were very close to those obtained for biochar produced at laboratory-scale, suggesting that upscaling from laboratory to medium-scale pyrolyzers had little effect on biochar stability. In the field, the medium-scale biochar applied at up to 25 t C ha-1 decomposed at an estimated 0.8% per year. In conclusion, our biochar scored high on stability indices in the laboratory and displayed a mean residence time > 100 years in the field, which is the threshold for permanent removal in C sequestration projects.

To document

Abstract

Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar’s effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar’s contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.

To document

Abstract

Biochar is a carbon-rich solid product obtained by pyrolysis of biomass. Here, we investigated multiple biochars produced under slow pyrolysis (235–800 °C), flash carbonization, and hydrothermal carbonization (HTC), using Scanning Electron Microscope—Energy Dispersive X-ray Spectroscopy (SEM-EDX) in order to determine whether SEM-EDX can be used as a proxy to characterize biochars effectively. Morphological analysis showed that feedstock has an integrated structure compared to biochar; more pores were generated, and the size became smaller when the temperature increased. Maximum carbon content (max. C) and average carbon content (avg. C) obtained from SEM-EDX exhibited a positive relationship with pyrolysis temperature, with max. C correlating most closely with dry combustion total carbon content. The SEM-EDX O/C ratios displayed a consistent response with the highest treatment temperature (HTT). The study suggests that SEM-EDX produces highly consistent C, oxygen (O), and C/O ratios that deserve further investigation as an operational tool for characterization of biochar products.

To document

Abstract

A well-defined methodology for constructing appropriate atomistic representations of biochar will aid in visualizing the structural features and elucidating biochar behavior with molecular dynamics (MD) simulations. Such knowledge will facilitate engineering biochars tailored to specific applications. To achieve this goal, we adapted modeling strategies applied in coal science by employing multi-cross-polarization 13C nuclear magnetic resonance, ultimate analysis, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy to identify functional groups. Helium density, surface area, and porosity were used to assess structural features. Biochar's aromatic cluster size distribution was proposed based on data from the benzene polycarboxylic acid method. The computational framework reduces bias by incorporating chemical information derived from density functional theory, reactive MD simulations, and advanced characterization data. The construction approach was successfully applied to cellulose biochars produced at four temperatures, obtaining independent representations with a relative error on the atomic contents of <10 % for oxygen and nitrogen and <5 % for carbon and hydrogen. The atomistic representations were validated using X-ray diffraction, electron spin resonance data, and laser desorption/ionization Fourier-transform ion cyclotron resonance-mass spectrometry. The code will assist others in overcoming structural creation barriers and enable the utilization of the generated structures for further simulations.