Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

To document

Abstract

Key message This literature review identified the main factors for the success of different silvicultural approaches to regenerate sessile oak naturally and unveiled at the same time important knowledge gaps. Most previous studies were only short-term and restricted to a few factors and single locations. Hence, the findings of these studies are of limited explanatory power and do not allow to develop general, widely applicable management recommendations. Context Successful natural regeneration of sessile oak (Quercus petraea (Matt.) Liebl.) through silvicultural actions depends on a number of biotic, abiotic and management factors and their interactions. However, owing to a limited understanding about the influence of these critical factors, there is great uncertainty about suitable silvicultural approaches for natural oak regeneration, in particular regarding the size of canopy openings and speed of canopy removal. Aims This study aimed at critically evaluating documented information on natural regeneration of sessile oak. Specifically, we identified (i) the factors that determine the success of approaches for natural regeneration and (ii) evaluated the evidence base associated with different silvicultural approaches. Methods A comprehensive literature search was done considering relevant peer-reviewed publications of ISI-listed journals as well as non-ISI listed published papers and reports by practitioners. Out of more than 260 collected references, a set of 53 silvicultural ‘core publications’ was identified and analyzed using a catalogue of numeric and categorical evaluation criteria. Results The most important factors determining regeneration success extracted from the literature were light availability, presence of competing vegetation, initial oak seedling density, browsing of seedlings and intensity of stand tending measures. However, the review revealed also great uncertainty regarding the interactions between these factors and the magnitude of their influence. Most studies were of short duration and restricted to single locations. In only 20% of the experimental studies, the observation period exceeded five years. Total costs of regeneration efforts were quantified and reported in only two studies. This lack of data on the expenses of different approaches to natural oak regeneration appears to be one of the most crucial knowledge deficits revealed in this literature review. Conclusion Natural regeneration of sessile oak may be achieved under a wide range of canopy openings, if competing vegetation and browsing is negligible, seedling density is high and tending to remove competing vegetation is carried out consistently. However, since the silvicultural regeneration success depends on the interactions among these factors, which have often not been adequately considered, we caution against general recommendations for silvicultural systems developed from case studies and call for new long-term studies with comprehensive experimental designs.

To document

Abstract

One of the most important factors affecting photosynthesis and metabolism is light absorbance by leaves and penetration through the canopy. The aim of this study was to evaluate the influence of planting density and tree development stages on photosynthetic activity, photosynthetic pigments, and carbohydrates in apple (Malus domestica Borkh.) trees in a combined way. The apple tree, Auksis, was grafted on dwarfing rootstock P 22. Space between rows was 3 m, trees were planted in 2001 in four distances: 0.25 m, 0.50 m, 0.75 m, and 1.00 m. Measurements and leaf samples were taken in the end of May (leaves fully expanded BBCH 20–25), in the middle of July (beginning of apple maturity BBCH 73–75) and at the end of August (harvest time BBCH 87–88) according BBCH—growth stages. Photosynthetic rate was significantly the lowest in the spring and tended to rise until fruit ripening, when it increased up to 19.4% compared to spring. Significantly the highest chlorophyll b and carotene α and β contents were found at the BBCH 73–75. The lowest levels of fructose and sorbitol in leaves were found at BBCH 73–75. The amount of starch accumulated in the leaves increased three times in summer compared to spring. Reduced distance between trees to four times (from 1 m to 0.25 m) showed clear competitive stress, as the decrease of photosynthetic rate (up to 36.4–38.6%) and total starch (up to 37–53%) was observed. The photosynthetic behaviour of apple trees was significantly affected by the development stage during the particular season which is related with physiological changes of metabolites transport and their distribution during fruit ripening and leaf senescence.

To document

Abstract

Pasteuria spp. are endospore forming bacteria which act as natural antagonists to many of the most economically significant plant parasitic nematodes (PPNs). Highly species-specific nematode suppression may be observed in soils containing a sufficiently high density of Pasteuria spp. spores. This suppression is enacted by the bacteria via inhibition of root invasion and sterilization of the nematode host. Molecular methods for the detection of Pasteuria spp. from environmental DNA (eDNA) have been described; however, these methods are limited in both scale and in depth. We report the use of small subunit rRNA gene metabarcoding to profile Pasteuria spp. and nematode communities in parallel. We have investigated Pasteuria spp. population structure in Scottish soils using eDNA from two sources: soil extracted DNA from the second National Soil Inventory of Scotland (NSIS2); and nematode extracted DNA collected from farms in the East Scotland Farm Network (ESFN). We compared the Pasteuria spp. community culture to both nematode community structure and the physiochemical properties of soils. Our results indicate that Pasteuria spp. populations in Scottish soils are broadly dominated by two sequence variants. The first of these aligns with high identity to Pasteuria hartismeri, a species first described parasitizing Meloidogyne ardenensis, a nematode parasite of woody and perennial plants in northern Europe. The second aligns with a Pasteuria-like sequence which was first recovered from a farm near Edinburgh which was found to contain bacterial feeding nematodes and Pratylenchus spp. encumbered by Pasteuria spp. endospores. Further, soil carbon, moisture, bulk density, and pH showed a strong correlation with the Pasteuria spp. community composition. These results indicate that metabarcoding is appropriate for the sensitive, specific, and semi-quantitative profiling of Pasteuria species from eDNA.

To document

Abstract

Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts—as being less fine‐tuned to host development—to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic‐level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.

To document

Abstract

Microdochium majus and Microdochium nivale cause serious disease problems in grasses and cereal crops in the temperate regions. Both fungi can infect the plants during winter (causing pink snow mould) as well as under cool humid conditions during spring and fall. We conducted a pathogenicity test of 15 M. nivale isolates and two M. majus isolates from Norway at low temperature on four different grass cultivars of Lolium perenne and Festulolium hybrids. Significant differences between M. nivale isolates in the ability to cause pink snow mould were detected. The M. nivale strains originally isolated from grasses were more pathogenic than isolates from cereals. The genetic diversity of M. nivale and M. majus isolates was studied by sequencing four genetic regions; Elongation factor-1 alpha (EF-1α), β-tubulin, RNA polymerase II (RPB2) and the Internal Transcribed Spacer (ITS). Phylogenetic trees based on the sequences of these four genetic regions resolved M. nivale and M. majus isolates into separate clades. Higher genetic diversity was found among M. nivale isolates than among M. majus isolates. M. nivale isolates revealed genetic differences related to different host plants (grasses vs. cereals) and different geographic regions (Norway and UK vs. North America). Sequence results from the RPB2 and β-tubulin genes were more informative than those from ITS and EF-1α. The genetic and phenotypic differences detected between Norwegian M. nivale isolates from cereals and grasses support the assumption that host specialization exist within M. nivale isolates.

To document

Abstract

A large area of Estonian hemiboreal forest is recovering from clear-cut harvesting and changing carbon (C) balance of the stands. However, there is a lack of information about C- source/sink relationships during recovery of such stands. The eddy covariance technique was used to estimate C-status through net ecosystem exchange (NEE) of CO2 in two stands of different development stages located in southeast Estonia in 2014. Measured summertime (June–September) mean CO2 concentration was 337.75 ppm with mean NEE −1.72 µmol m−2 s−1. June NEE was −4.60 µmol m−2 s−1; July, August, and September NEE was −1.17, −0.77, and −0.25 µmol m−2 s−1, respectively. The two stands had similar patterns of CO2 exchange; measurement period temperature drove NEE. Our results show that after clear-cutting a 6-year-old forest ecosystem was a light C-sink and 8-year-old young stand demonstrated a stronger C-sink status during the measurement period.