Junbin Zhao
Research Scientist
Biography
My work ranges from plant level ecophysiological processes to ecosystem level carbon, water and energy balance. I am particularly interested in the impact of climate change (including relevant extreme events, e.g., drought, flooding, snow storm, etc.) on these processes and their climate feedbacks. I use many state-of-the-art techniques in my research work, including eddy covariance for ecosystem level gas exchange observations, automatic static/dynamic chambers for plot-level or whole-plant-level gas exchange measurements and machine learning models for data analysis and prediction.
__________________________________________________
Professional appointments
2019 – present Research Scientist Norwegian Institute of Bioeconomy Research (NIBIO)
2016 – 2019 Postdoctoral associate Florida International University (FIU)
2013 – 2015 Postdoctoral researcher Swedish University of Agricultural Sciences (SLU)
__________________________________________________
Education
2013 Ph. D University of Chinese Academy of Sciences, Beijing, China
2011 – 2012 Visiting Ph.D student Max Planck Institute for Biogeochemistry, Jena, Germany
2007 B. S. Yunnan University, Kunming, China
Authors
Palingamoorthy Gnanamoorthy Junbin Zhao Yajun Chen Linjie Jiao Boonsiri Sawasdchai Zhang Jing Abhishek Chakraborty Pramit Kumar Deb Burman Sung‐Ching Lee Thomas A. M. Pugh Yiping Zhang Qinghai SongAbstract
ABSTRACT Increasing drought frequency and intensity affect biophysical functions of natural ecosystems. In tropical semi‐arid savannas, while immediate drought effects are well‐studied, the drought legacy effects on vegetation composition and associated ecosystem functions remain unclear. We used data of vegetation composition, net ecosystem CO 2 exchange, surface albedo and evapotranspiration (ET) in 2017–2022 from a savanna ecosystem, Southwest China, to investigate the legacy effect of an extreme drought event that occurred in 2019. Vegetation declined continuously for 3 post‐drought years. While tree numbers declined by 12%, shrub numbers dropped by 50% compared with pre‐drought levels, shifting vegetation dominance toward trees. This structural change caused sustained reductions in albedo and ET, which remained below pre‐drought levels, despite gross primary production recovering in the years immediately post‐drought. Vegetation shifts disproportionately impact ecosystem functions, with energy and water fluxes exhibiting greater vulnerability and potentially enhancing regional warming as droughts increase in Asian savannas.
Abstract
No abstract has been registered
Authors
Igor A. Yakovlev Thiago Inagaki Junbin Zhao Pierre-Adrien Rivier Hege Særvold Steen Inger Heldal Daniel Rasse Jihong Liu Clarke Nicholas ClarkeAbstract
No abstract has been registered