Sigridur Dalmannsdottir

Research Scientist

(+47) 465 46 249
sigridur.dalmannsdottir@nibio.no

Place
Holt

Visiting address
Holtveien 66, 9269 Tromsø

To document

Abstract

The aim of the "Arctic as a food producing region" - project is to assess the potential for increased production and added value of food from the Arctic region, with the overarching aim of improving economic and social conditions of Arctic communities. This report is the output from the first phase of the project, providing a description of the main food production and examples of conditions for food production in the Arctic areas of the countries involved. This will form the basis for further analysis of opportunities, driving forces and barriers for further development of arctic food production, in the next phase of the project. The project has participation from Canada, Denmark, Greenland, Iceland, Norway and Russia, and is endorsed by the Arctic Council Sustainable Development Working Group (SDWG).

To document

Abstract

The effect of variable autumn temperatures in combination with decreasing irradiance and daylength on photosynthesis, growth cessation and freezing tolerance was investigated in northern- and southern-adapted populations of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense) intended for use in regions at northern high latitudes. Plants were subjected to three different acclimation temperatures; 12, 6 and 9/3°C (day/night) for 4 weeks, followed by 1 week of cold acclimation at 2°C under natural light conditions. This experimental setup was repeated at three different periods during autumn with decreasing sums of irradiance and daylengths. Photoacclimation, leaf elongation and freezing tolerance were studied. The results showed that plants cold acclimated during the period with lowest irradiance and shortest day had lowest freezing tolerance, lowest photosynthetic activity, longest leaves and least biomass production. Higher acclimation temperature (12°C) resulted in lower freezing tolerance, lower photosynthetic activity, faster leaf elongation rate and higher biomass compared with the other temperatures. Photochemical mechanisms were predominant in photoacclimation. The northern-adapted populations had a better freezing tolerance than the southern-adapted except when grown during the late autumn period and at the highest temperature; then there were no differences between the populations. Our results indicate that the projected climate change in the north may reduce freezing tolerance in grasses as acclimation will take place at higher temperatures and shorter daylengths with lower irradiance.

To document

Abstract

1. Increased species diversity promotes ecosystem function; however, the dynamics of multi-speciesgrassland systems over time and their role in sustaining higher yields generated by increased diver-sity are still poorly understood. We investigated the development of species’ relative abundances ingrassland mixtures over 3 years to identify drivers of diversity change and their links to yield diver-sity effects.2. A continental-scale field experiment was conducted at 31 sites using 11 different four-speci esmixtures each sown at two seed abundances. The four species consisted of two grasses and two legumes, of which one was fast establishing and the other temporally persistent. We modelledthe dynamics of the four-species mixtures, and tested associations with diversity effects on yield.3. We found that species’ dynamics were primarily driven by differences in the relative growth rates(RGRs) of competing species, and secondarily by density dependence and climate. The temporallypersistent grass species typically had the highest RGRs and hence became dominant over time. Den-sity dependence sometimes induced stabilising processes on the dominant species and inhibitedshifts to monoculture. Legumes persisted at most sites at low or medium abundances and persistencewas improved at sites with higher annual minimum temperature.4. Significant diver sity effects were present at the majority of sites in all years and the strength ofdiversity effects was improved with higher legume abundance in the previous year. Observed diver-sity effects, when legumes had declined, may be due to (i) important effects of legumes even at lowabundance, (ii) interaction between the two grass species or (iii) a store of N because of previouspresence of legumes.5. Synthesis. Alongside major compositional changes driven by RGR differences , diversity effectswere observed at most sites, albeit at reduced strength as legumes declined. This evidence stronglysupports the sowing of multi-species mixtures that include legumes over the long-standing practiceof sowing grass monocultures. Careful and strategic selection of the identity of the species used inmixtures is suggested to facilitate the maintenance of species diversity and especially persistence oflegumes over tim e, and to preser ve the strength of yield increases associated with diversity.

To document

Abstract

Although grass dominates most agricultural systems in the North Atlantic region (NAR), spring barley is the most important cereal and is used for animal feed and food and drink products. Recent changes in climate have resulted in warmer conditions across the NAR which have major implications for crop production. In this paper, we investigate the thermal requirement of spring barley in the region and use the results to examine the effects of recent trends in temperature and rainfall on barley cultivation, based on 11 regional meteorological sites. At these sites, between 1975 and 2015, we found significant warming trends for several months of the cropping season and significant trends for increases in the cropping season degree days (CSDD). In recent years, this has resulted in an increased proportion of years when the estimated minimum thermal requirement for barley has been met at sites above about 60°N. However, annual variations in CSDD are large and years still occur at these sites where this is insufficient. While warming could potentially allow an earlier start and later end to the cropping season, it is likely that high rainfall at maritime sites, and low rainfall at continental sites, will limit the ability of growers to benefit from this. Warming is considered to have been one of the main factors contributing to the large expansion of the area of barley cultivated in Iceland since the 1990s.

To document

Abstract

1. Grassland diversity can support sustainable intensification of grassland production through increased yields, reduced inputs and limited weed invasion. We report the effects of diversity on weed suppression from 3 years of a 31-site continental-scale field experiment. 2. At each site, 15 grassland communities comprising four monocultures and 11 four-species mixtures based on a wide range of species' proportions were sown at two densities and managed by cutting. Forage species were selected according to two crossed functional traits, “method of nitrogen acquisition” and “pattern of temporal development”. 3. Across sites, years and sown densities, annual weed biomass in mixtures and monocultures was 0.5 and 2.0 t DM ha−1 (7% and 33% of total biomass respectively). Over 95% of mixtures had weed biomass lower than the average of monocultures, and in two-thirds of cases, lower than in the most suppressive monoculture (transgressive suppression). Suppression was significantly transgressive for 58% of site-years. Transgressive suppression by mixtures was maintained across years, independent of site productivity. 4. Based on models, average weed biomass in mixture over the whole experiment was 52% less (95% confidence interval: 30%–75%) than in the most suppressive monoculture. Transgressive suppression of weed biomass was significant at each year across all mixtures and for each mixture. 5. Weed biomass was consistently low across all mixtures and years and was in some cases significantly but not largely different from that in the equiproportional mixture. The average variability (standard deviation) of annual weed biomass within a site was much lower for mixtures (0.42) than for monocultures (1.77). 6. Synthesis and applications. Weed invasion can be diminished through a combination of forage species selected for complementarity and persistence traits in systems designed to reduce reliance on fertiliser nitrogen. In this study, effects of diversity on weed suppression were consistently strong across mixtures varying widely in species' proportions and over time. The level of weed biomass did not vary greatly across mixtures varying widely in proportions of sown species. These diversity benefits in intensively managed grasslands are relevant for the sustainable intensification of agriculture and, importantly, are achievable through practical farm-scale actions.

Abstract

Eight experiments with cultivars (cvs.) of grass and clover species were established in the Faroe Islands, Greenland, Iceland, Norway and Sweden to evaluate important forage species and cvs. in terms of yield potential, persistence and adaptation to variable climate in the West Nordic countries. Timothy had on average the highest spring cover after three years of trial together with smooth meadow grass (cv. Knut), whereas perennial ryegrass had the lowest spring cover after three years. On average cocksfoot (cv. Laban) and timothy (Grindstad related cvs.) gave the highest yield, 8.85 and 8.71 t ha-1, respectively, and smooth meadow grass and common bent grass the lower yields, 7.52 and 7.30 t ha-1, respectively. The results from these experiments show that we have a wide range of species and cultivars usable in the West Nordic areas. We can meet an increase in temperature to a certain level by moving the more southern species and cvs. farther north, however, our most winter hardy cvs. are still important to maintain.

To document

Abstract

The expected temperature rise in late summer/early autumn can change the conditions for acclimation and affect the winter survival of perennial crops. This study examined the effect of the temperature just before the onset of cold acclimation (pre-acclimation) on freezing tolerance of timothy (Phleum pratense L.), perennial ryegrass (Lolium perenne L.) and red clover (Trifolium pratense L.) populations (both cultivars and breeding populations) adapted to either northern or southern parts of Norway. Using phytotron experiments, we studied whether increasing pre-acclimation temperature delays growth cessation, affects photoacclimation and reduces freezing tolerance. Furthermore, we assessed whether these effects were related to the latitudinal adaptation of the plant material. The results showed that a rise in pre-acclimation temperature decreased both cold acclimation capacity and photoacclimation in these species. This affected the freezing tolerance, which was reduced significantly more in northern-adapted population of timothy and perennial ryegrass compared with southern-adapted populations. Red clover was less affected by temperature changes than the grasses.

To document

Abstract

This study evaluates the effects of climate change on agriculture in Northern Norway. It is based on downscaled climate projections for six different municipalities combined with interviews with farmers, advisors and administrative personnel in these municipalities. The projections document large climatic differences both between and within the different municipalities. The main predicted climatic changes include increasing temperatures and precipitation as well as increased frequency of certain types of extreme weather events. Despite challenges such as unstable winters, increased autumn precipitation and possibly more weeds and diseases, a prolongation of the current short growth season together with higher growth temperatures can give new opportunities for agriculture here. The impacts are expected to differ both within and between municipalities and will require tailored adaptive strategies. Most of these however should pose no difficulty implementing, having an agronomical basis that farmers are accustomed to cope with.

Abstract

An interdisciplinary study, based on downscaled climate change scenarios and interviews with local farmers in Northern Norway, has assessed biological and agronomic effects of climate change, and interaction with political, economic and social factors. The study confirms that farmers are facing complex challenges. Negative effects from climate change combine with other challenges.

Abstract

In order to detect the efficiency of the nitrogen (N2) fixation in clover-grass leys in northern climate conditions, we studied how soil compaction affects growth and N2 -fixation of white clover (Trifolium repens L.) under contrasting growth conditions. A pot experiment was carried out under controlled climatic conditions in the phytotron at Holt (Tromsø). Sandy soil was compacted to two levels, 60% and 85% of the standard degree of compactness (SDC). Four seedlings of white clover plants or timothy (Phleum pratense L.) were carefully planted in each pot. Timothy was used as reference plant. The plants were placed at 15 ºC for twelve weeks and subjected to 18 or 24 h daylight. The 15N isotope dilution method was used to assess N2 -fixation. Results suggest that 24 h daylight increased white clover biomass production as compared to 18 h daylight and favoured leaf and stolon production significantly more at 85% of SDC than at 60% of SDC. However, for white clover plants grown at 18 h day length higher compactness reduced the root development. On average, white clover derived 44-58% of its total N from N2 -fixation grown at 60% of SDC and 46-47% at 85% of SDC, regardless of light conditions. The N2 -fixation was somewhat higher at 24 h day length only under the low soil compaction level.

To document

Abstract

As a primary industry, agriculture is directly dependent on natural conditions and therefore potentially vulnerable to the consequences of climate change. In Norway and Northern Norway in particular, the future climatic changes are expected to be overall positive. Still, the consequences for agriculture are not straightforward, but dependent on the interaction between different weather and biological elements, as well as political, economic and social conditions. In this interdisciplinary study we have assessed biological and agronomic effects of climate change, and their interaction with political, economic and social factors, to identify farmers' vulnerability and adaptive capacity to climate change. The assessments are based on downscaled climate change scenarios and interviews with local farmers in the three northernmost counties in Northern Norway (latitude 65.5° to 70°). The study shows that the farmers to a degree are vulnerable to a changing climate, not mainly because of the direct effects of changing growing conditions, but because these changes are an added factor to an already tenuous situation created by Norwegian agricultural policy and socio-economic development in general. We have found that farmers are highly adaptive, to both changing growing conditions and changing agricultural policies. However, changes in policy are currently a greater challenge to farmers than climate change, and such changes are therefore a more salient driver of vulnerability.