Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

1999

Abstract

The impact of climate change on a mini forest ecosystem was studied for three years in an open-top chamber (OTC) experiment with an outside control plot. Clones of Silver birch (Betula pendula Roth.) and Norway spruce (Picea abies (L.) Karst) were grown in monolithic lysimeters containing undisturbed profiles of podsolic forest soil. The original understory was also present.The soil temperature was increased with 2-3 C. The atmospheric CO2 concentration in the OTCs was ambient (380mol mol-1 CO2), approximately 500 and 700 mol mol-1 CO2. The leachates from the lysimeters was collected, and the solute concentration was analysed monthly.Increased soil temperature increased the mineralisation of soil organic matter, and large amounts of nitrate, dissolved organic nitrogen (DON) and aluminium were released. In the leachates from the 500 mol mol-1 CO2 birch lysimeters, high concentrations of Al were recorded during the second and third growth seasons.The high concentrations of Al were correlated with high concentration of total organic carbon (TOC) and increased pH. Large amounts of Al was organically bound in these leachates. The origin of the organic ligands could have been products of the birch roots, e.g. root exudates.

Abstract

The impact of elevated CO2 and increased temperature on the soil of a mini forest ecosystem was investigated in an open-top chamber experiment. The CO2 treatments of the OTCs were ambient, 500 and 700 mmol CO2 mol-1 with an ambient outdoor control. All soils were warmed by natural air flow and radiation to a temperature 2-3 C above a corresponding forest soil site. Overheating was prevented by a cooling system. Silver birch and Norway spruce were planted in undisturbed soil monolithic profiles, with their original understory, in lysimeters and compared to a lysimeter control with understory only. Soil samples were collected in the forest at the end of the experiment and used as reference samples. Increased temperature was found to cause the greatest effect on soil. All data clearly indicated increased breakdown of the soil organic matter with increased temperature. The breakdown of raw humus gave a decrease in concentration of total C, total N, and in the exchangeable plus extractable elements (org.-C, Ca, K, Mg, Mn, t-P and t-S) relative to the original forest reference soil in the range of 18 - 57 %. The exchangeable plus extractable elements (Al, Fe, Si, NH4-N and org.-N) from the raw humus layer increased in concentration relative to original forest soil by 28 - 96 %. The effect of different vegetation on soil quality was less than for the temperature increase. Birch had the strongest effect by decreasing soil acidity and the concentration of exchangeable Al throughout the soil profile relative to spruce. Birch also increased weathering of mineral soil relative to spruce. The effects of CO2 treatment on the soil were clearly smaller than for the temperature and vegetation parameters. Elevated CO2 gave increased concentrations of exchangeable plus extractable Zn, organic C and organic N for the raw humus layer of the understory and spruce vegetation relative to the raw humus of the birch lysimeters. Principal component analysis of the complete data set indicated an effect of elevated CO2 on the humus layer relative to the ambient treatments. This effect was seen most clearly in the lysimeters with understory vegetation.