Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2000

Abstract

Between 1990 and 2010 the projected emissions of greenhouse gases in Norway is assumed to increase 24%. As a signatory to the Kyoto Protocol, Norway is supposed to limit the greenhouse gas emissions in the period 2008-2012 to 1% above the 1990 level.Potentially, forestry activities may contribute as a means to achieve the set target of emission reductions. The initial Norwegian views and proposals for definitions and accounting framework for activities under Articles 3.3 and 3.4 of the Kyoto Protocol was reported to the UNFCCC August 1 2000 by the Norwegian Ministry of Environment.There was also an annex to the submission with preliminary data and information on Articles 3.3 and 3.4 of the Kyoto Protocol. This paper is based on this annex, and focuses mainly on data for forests and other woodlands. Preliminary data indicate that approximately 85% of the carbon (C) pool of forested systems is found in the soil.The major part of the annual C sequestration takes place in living biomass and soil, while sequestration in wood products and landfills etc. has been found to be of minor importance. It must be noted that the reported data are preliminary and contain large uncertainties.

Abstract

We have studied how callus cultures from two clones of Norway spruce influence the growth of two pathogens, Ceratocystis polonica and Heterobasidion annosum, when co-cultivated in vitro. In field experiments, trees of clone 409 were susceptible to both fungi, whereas clone 589 was less affected. Callus was cultured on medium containing cytokinins (benzylaminopurine, kinetin) and with or without auxin (2,4-dichlorphenoxy acetic acid). For co-cultivation with fungus, one piece of callus was placed towards the edge of each Petri dish. One and 14 days after inoculation with callus the dishes were co-inoculated with the fungus. Both clones strongly stimulated the initial growth of both fungi. Clone 589 inhibited the growth of both fungi when the fungi were inoculated one day after the callus. When the callus was cultured on medium without auxin for 14 days before co-inoculation clone 589 strongly inhibited the growth of both fungi, whereas clone 409 inhibited H. annosum only.