Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2011

Abstract

Understanding the driving forces affecting species occurrences is a prerequisite for determining the indicator suitability of crenic plants. We analysed 18 environmental variables in a two-step approach, evaluating their ability to explain the species composition of 222 springs on five siliceous mountain ranges, in central Germany and north-west Czech Republic (49.9°–50.8°N, 10.6°–12.8°E). First, we identified the significant environmental variables in three subsets of spatial, hydrophysical and hydrochemical variables using a forward-selection procedure. We then performed a partial canonical correspondence analysis (pCCA) to estimate the influence of each subset alone, as well as in combinations. We also used a multiple response permutation procedure (MRPP) to compare the five regions with respect to the dissimilarity of their vegetation composition and environmental variables. Hydrochemical factors played a fundamental role in determining the plant community of the investigated springs. Spatial factors, in particular altitude, were correlated with the hydrochemical factors, but were less important. Hydrophysical factors played only a marginal role. More precisely, species occurrence was mainly driven by a gradient of nutrient availability, which in turn reflected the acidity status. This gradient was primarily represented by high Al, Cd, and Mn concentrations in acidic crenic waters, high Ca and Mg concentrations were encountered in circumneutral springs. By comparing the five regions we could show that there are spatial patterns in the vegetation of springs, which provide valuable ecological information on the water quality. We therefore suggest that biomonitoring approaches to vegetation are suitable for revealing the acidity status of springs and their forested catchments.

Abstract

Scaling accuracy is of utmost importance to obtain optimal yield in log breakdown. In this paper we have combined sawmill experience, a review of available publications and supplementary observations to analyse the accuracy of roundwood scaling for Norway spruce and Scots pine. The influence of ovality, bark thickness variation and bark damage were analysed for scaling in one-directional and two- directional shadow scanners, and for three-dimensional (3D) reflected beam scanners. The overall accuracy for diameter under bark can be calculated by adding the variances for each independent term. For unbarked logs, shadow scanners with two perpendicular directions are most accurate. Results show that 3D scanners are most accurate, provided used for barked logs. For a case study, transferring from scaling unbarked logs in a two-dimensional shadow scanner to a full 3D scan of barked logs reduced annual roundwood consumption by 2.0%.

Abstract

The theoretical potential for increased efficiency in early thinning by using accumulating harvester heads was investigated through simulation. Thinning was performed in corridors perpendicular to the strip road in 75 artificially generated stands with varying average tree size and density. The work pattern and work time in the crane work for five sizes of heads, with grapple diameters in the range of 10 to 50 cm, was estimated by the simulation model. The efficiency increased rapidly when the grapple diameter increased from two to four times the average diameter in the harvested stand, reducing the work time per tree by 15 to 50 percent compared to the single tree handling harvester head. Further increases in grapple dimension also increased the efficiency, but not at the same rate. In real work, the efficiency increase by an accumulating harvester head will probably be slightly lower due to less optimal harvesting conditions, operator skills and other non-productive work tasks that are not affected by work method.

Abstract

Forest regrowth in rural districts of Norway is currently leading to extensive landscape changes. We aim to quantify and understand the future impact of outfield forest regrowth following land-use abandonment on red-listed vascular plant species which are supposedly threatened by regrowth in Norway, i.e. species classified to habitats within the semi-natural landscape. Vascular plant species were defined by the Norwegian Red List and presence data was downloaded from the Norwegian GBIF-node, Artskart. A newly developed spatially explicit model of deforested semi-natural heaths and meadows in Norway was used to evaluate the vulnerability of red-listed plants to future forest regrowth. The results show that some red-listed species may be greatly affected, since they have most of their known populations within the modelled areas of future forest regrowth. The study also revealed that there are many methodological challenges in using museum databases for hypothesis testing. However, the use of such databases was clearly hypothesis generating, giving us many ideas for future studies.

Abstract

Extensive landscape and vegetation changes are apparent within rural districts of Norway, especially as forest regrowth on abandoned agricultural land. Forest regrowth changes the landscape and vegetation heterogeneity, thus affecting management issues related to, for example, biodiversity and landscape aesthetics. By comparing up-to-date actual vegetation maps (AVMs), interpreted previous vegetation maps (IPVs), and potential natural vegetation maps (PNVs), we assess and quantify structural changes on a landscape level which are important for biological diversity and also the tourism industry. Our findings indicate that landscapes in rural districts of Norway have changed and that changes will continue in the future. The landscapediversity did not decrease from the 1970s until 2009. Further forest regrowth however, will lead to reduced landscape heterogeneity, while landscape connectivity will increase.

Abstract

Wood exhibits a highly anisotropic mechanical behavior due to its heterogeneous microscopic structure and composition. Its microstructure is organized in a strictly hierarchical manner from a length scale of some nanometers, where the elementary constituents cellulose, hemicelluloses, lignin, and extractives are found, up to a length scale of some millimeters, where growth rings composed of earlywood and latewood are observed. To resolve the microscale origin of the mechanical response of the macro-homogeneous but micro-heterogeneous material wood, micromechanical modeling techniques were applied. They allow for prediction of clear wood stiffness (Hofstetter et al. 2005,2007, Bader et al. 2010a,b) from microstructural characteristics. Fungal decay causes changes in the wood microstructure, expressed by decomposition or degradation of its components (Côté 1965, Schwarze 2007). Consequently, macroscopic mechanical properties are decreasing (see e.g. Wilcox 1978). Thus, in the same manner as for clear wood, consideration of alterations of wood in a micromechanical model allows predicting changes in the macroscopic mechanical properties. This contribution covers results from an extensive experimental program, where changes in chemophysical properties and corresponding changes in the mechanical behavior were investigated. For this purpose, pine (Pinus sylvestris) sapwood samples were measured in the reference condition, as well as degraded by brown rot (G. loeophyllum trabeum) or white rot (Trametes. versicolor). Stiffness properties of the unaffected and the degraded material were not only measured in uniaxial tension tests in the longitudinal direction, but also in the three principal material directions by means of ultrasonic testing. The experiments revealed transversal stiffness properties to be much more sensitive to degradation than longitudinal stiffness properties. This is due to the degradation of the polymer matrix between the cellulose fibers, which has a strong effect on the transversal stiffness. On the contrary, longitudinal stiffness is mainly governed by cellulose, which is more stable with respect to degradation by fungi. Consequently, transversal stiffness properties or ratios of normal stiffness tensor components may constitute suitable durability indicators. Subsequently, simple micromechanical models, as well as a multiscale micromechanical model for wood stiffness, were applied for verification of hypotheses on degradation mechanisms and model validation.

Abstract

In 2005 an extensive test program including field tests was set up in order to obtain more data on the durability and long term performance of modified wood and semi-durable wood species. One of the main challenges for modified wood is to predict accurate service life time in UC3 (Use use class 3, above ground) and UC4 (use class 4, in soil or fresh water contact). So far, data from in-service conditions are rare, while several studies have evaluated the durability in lab or field test exposure. However, there is still a lack of studies comparing replicate modified wood products in both field and lab exposure. This study evaluates the efficacy of modified wood in AWPA E10, three different types of soil in lab (ENV 807), three test fields in-ground (EN 252) and two close to ground (horizontal double layer test) set-ups at two test sites. The test material includes furfurylated, acetylated and thermally modified wood in addition to reference treated and control samples. In laboratory, both furfurylated, acetylated and thermally modified pine (212ºC) performed well. The modified wood samples performed at the same level, or better, than the reference CC and CCA preservatives in retentions for UC4 applications. In the horizontal double layer test, five years is still too short time to be able to draw firm conclusions. However, in the most accelerated HDL set-up, all controls have failed or are moderately to severely decayed whereas most preservative treated, furfurylated and acetylated wood are sound or only slightly decayed. After 5 years of testing CCA-preserved wood performs better in-ground in field tests than in lab tests, whereas modified wood generally performs slightly poorer. Just like in the lab tests, however, acetylated wood performs equal to CCA-preserved wood in UC4. Furfurylated wood performs equal to or better than UC3 level preservative treated wood. Thermally modified wood actually performs much poorer than all preservative treated wood references. Finally, natural durability classification of the same treatment in different lab and field tests was surprisingly similar.

Abstract

Scots pine (Pinus sylvestris L.) is an important softwood species in Northern Europe and is frequently used as material for various wood protection systems. In Europe, EN 113 is the standard basidiomycete laboratory durability test method, using mass loss as evaluation criteria. In this paper quantitative real-time PCR (qPCR) and thermogravimetric analysis (TGA) was used to characterize colonization by basidiomycetes in Scots pine sapwood, but also to learn more about the EN 113 test. Two different wood sample sizes were tested. For Gloeophyllum trabeum the largest sample size gave the highest mass loss, while for the smallest samples Trametes versicolor gave the highest mass loss. As expected, fungal DNA content and mass loss in Scots pine sapwood samples decayed by G. trabeum became higher with increasing incubation time of 16 weeks. More unexpectedly, the T. versicolor DNA content in Scots pine sapwood samples was highest at the start of the incubation period and declined during the incubation period, while mass loss increased during the 28 week incubation period. The fungal colonization in the side and middle of EN 113 samples was tested. Highest DNA contents of G. trabeum were measured in the sides during 16 weeks of incubation. The T. versicolor DNA content was higher or similar in the side compared to the middle of the samples until week 20. For weeks 20 and 22 the DNA content was higher in the middle than in the sides, while for the remaining incubation period (weeks 24, 26 and 28) it was quite similar. TGA was shown to be a useful and fast method for chemical characterization of brown rot decayed wood, but cannot be used for white rot decayed wood. For T. versicolor moisture and fungal DNA explained most of the variation in mass loss, while for G. trabeum moisture explained most of the variation in mass loss.

Abstract

Moisture is often recognised as a key factor regarding the long time performance of wooden products, and one of the main challenges for timber products is to predict accurate service life in use class 3 (not covered above ground) and use class 4 (in soil or fresh water contact). A range of durability classification studies have been performed both in field and laboratory. But for several wood species information regarding the durability in use class 3 is lacking. Also, there is still a lack of studies comparing replicate wood products in different field exposure situations. This study evaluates the natural durability of different North European wood species in two different climates and in two different use classes. The wood species were compared with imported species and two preservative treatments. The overall picture shows a higher decay rating for wood species tested in ground contact compared with the results from the above ground “Double layer tests”. Moreover, the woods tested in Western Norway are more decayed than those tested in Eastern Norway. These findings can be explained by higher decay risk in use class 4 than in use class 3, and higher decay risk in a humid climate (Western Norway) than in a dry climate (Eastern Norway). The results indicate similar ranking of the durability of the wood species regardless of the environment they have been exposed to. The results from a linear regression show that MOE-loss of the mini-stakes after three years describes 70 % of the variation in decay rating of the “Double layer” stakes after six years exposure in Western Norway. This result strongly indicates that MOE-loss can be a prospective tool for rapid field testing of natural durability of wood.

Abstract

To understand the defence mechanisms utilized by decay fungi when exposed to different wood protection systems the study of gene expression can give us some answers. When the DNA sequences are known, primers can be designed to detect transcripts of genes with gene products related to basic cellular processes and hyphal growth. The characteristic gene products induced in different fungi by different wood protection systems can be identified. Studies on the expression of fungal genes will give us a better understanding of the fungal degradation of wood and we can optimize wood protection systems. Hence, no single technique will give us the answer to all questions about the decay of wood we need to gather small pieces of the puzzle using different approaches. The aim of the present study was to investigate the effects of acetylation level on the growth of Postia placenta with regard to amount of total DNA and gene expression targeting 7 different genes. This paper presents preliminary results after 4 weeks of incubation. The results presented in this paper are parts of a larger project which reaches over a period of 36 weeks with sampling times after 12, 20, 28 and 36 weeks. We found no mass loss in the acetylated samples after 4 weeks of incubation in a modified soil-block test. The presence of P. placenta DNA and the absence of mass loss could indicate on an inability of the mycelia to establish a wood exploitation phase. Two genes related to carbohydrate metabolism were expressed in a higher amount in P. placenta during growth on untreated wood than during growth on acetylated wood. However, for a third gene, also related to carbohydrate metabolism, the relationship was the opposite. Two genes related to oxidative metabolism were expressed in a higher amount in P. placenta during growth on acetylated wood than during growth on untreated wood and another two genes related to oxidative metabolism showed inconsistent results.