Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

To document

Abstract

Long-term and varied land use has had a major influence on the vegetation in rural Norway, and the traditional open landscapes are now being replaced by forests. In the present investigation, we assess and quantify structural vegetation changes caused by changes in land use and climate. Up-to-date actual vegetation maps from three rural study areas were compared with interpreted historical vegetation maps and potential natural vegetation (PNV) models. Our findings indicate that the present vegetation structure is strongly influenced by land use. In the studied sites, 56–66% of the areas presently have another vegetation type than expected from a natural state (PNV). The mean turnover of vegetation types in the study areas during the past 35–40 years was 25%. Our study highlights that the influence of land-use needs to be accounted for when considering the effects of climate change.

Abstract

In order to detect the efficiency of the nitrogen (N2) fixation in clover-grass leys in northern climate conditions, we studied how soil compaction affects growth and N2 -fixation of white clover (Trifolium repens L.) under contrasting growth conditions. A pot experiment was carried out under controlled climatic conditions in the phytotron at Holt (Tromsø). Sandy soil was compacted to two levels, 60% and 85% of the standard degree of compactness (SDC). Four seedlings of white clover plants or timothy (Phleum pratense L.) were carefully planted in each pot. Timothy was used as reference plant. The plants were placed at 15 ºC for twelve weeks and subjected to 18 or 24 h daylight. The 15N isotope dilution method was used to assess N2 -fixation. Results suggest that 24 h daylight increased white clover biomass production as compared to 18 h daylight and favoured leaf and stolon production significantly more at 85% of SDC than at 60% of SDC. However, for white clover plants grown at 18 h day length higher compactness reduced the root development. On average, white clover derived 44-58% of its total N from N2 -fixation grown at 60% of SDC and 46-47% at 85% of SDC, regardless of light conditions. The N2 -fixation was somewhat higher at 24 h day length only under the low soil compaction level.

To document

Abstract

Bryophytes are a dominant vegetation component of the boreal forest, but little is known about their associated fungal communities, including seasonal variation within them.•Seasonal variation in the fungal biomass and composition of fungal communities associated with three widespread boreal bryophytes was investigated using HPLC assays of ergosterol and amplicon pyrosequencing of the internal transcribed spacer 2 (ITS2) region of rDNA.•The bryophyte phyllosphere community was dominated by Ascomycota. Fungal biomass did not decline appreciably in winter (P = 0.272). Significant host-specific patterns in seasonal variation of biomass were detected (P = 0.003). Although seasonal effects were not the primary factors structuring community composition, collection date significantly explained (P = 0.001) variation not attributed to locality, host, and tissue. Community homogenization and a reduction in turnover occurred with the onset of frost events and subzero air and soil temperatures. Fluctuations in the relative abundance of particular fungal groups seem to reflect the nature of their association with mosses, although conclusions are drawn with caution because of potential methodological bias.•The moss-associated fungal community is dynamic, exhibiting seasonal turnover in composition and relative abundance of different fungal groups, and significant fungal biomass is present year-round, suggesting a winter-active fungal community.

To document

Abstract

Conifers are evolutionarily more ancient than their angiosperm counterparts, and thus some adaptive mechanisms and features influenced by epigenetic mechanisms appear more highly displayed in these woody gymnosperms. Conifers such as Norway spruce have very long generation times and long life spans, as well as large genome sizes. This seemingly excessive amount of genomic DNA without apparent duplications could be a rich source of sites for epigenetic regulation and modifications. In Norway spruce, an important adaptive mechanism has been identified, called epigenetic memory. This affects the growth cycle of these trees living in environments with mild summers and cold winters, allowing them to adapt rapidly to new and/or changing environments. The temperature during post-meiotic megagametogenesis and seed maturation epigenetically shifts the growth cycle programme of the embryos. This results in significant and long-lasting phenotypic change in the progeny, such as advance or delay of vital phenological processes of high adaptive value, like bud break and bud set. This phenomenon is not only of important evolutionary significance but has clear practical implications for forest seed production and conservation of forest genetic resources. The underlying molecular mechanism that causes the ‘memory’ in long-lived woody species is currently under investigation. Here we summarize the information related to epigenetic memory regulation in gymnosperms, with special emphasis on conifers. The molecular mechanism behind this is still unknown but transcriptional changes are clearly involved. Epigenetic regulation may be realized through several mechanisms, including DNA methylation, histone modification, chromatin remodelling, small non-coding RNAs and transposable element regulation, of which non-coding RNAs might be one of the most important determinants.