Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

Taper models, which describe the shape of tree stems, are central to estimating stem volume. Literature provides both taper- and volume models for the three main species in Norway, Norway spruce, Scots pine, and birch. These models, however, were mainly developed using approaches established over 50 years ago, and without consistency between taper and volume. We tested eleven equations for taper and six equations for bark thickness. The models were fitted and evaluated using a large dataset covering all forested regions in Norway. The selected models were converted into volume functions using numerical integration, providing both with- and without-bark volumes and compared to the volume functions in operational use. Taper models resulted in root mean squared error (RMSE) of 7.2, 7.9, and 9.0 mm for spruce, pine, and birch respectively. Bark thickness models resulted in RMSE of 2.5, 6.1, and 4.1 mm, for spruce, pine, and birch respectively. Validation of volume models with bark resulted in RMSE of 12.7%, 13.0%, and 19.7% for spruce, pine, and birch respectively. Additional variables, tree age, site index, elevation, and live crown proportion, were tested without resulting in any strong increase in predictive power.

To document

Abstract

Panoptic segmentation is the combination of semantic and instance segmentation: assign the points in a 3D point cloud to semantic categories and partition them into distinct object instances. It has many obvious applications for outdoor scene understanding, from city mapping to forest management. Existing methods struggle to segment nearby instances of the same semantic category, like adjacent pieces of street furniture or neighbouring trees, which limits their usability for inventory- or management-type applications that rely on object instances. This study explores the steps of the panoptic segmentation pipeline concerned with clustering points into object instances, with the goal to alleviate that bottleneck. We find that a carefully designed clustering strategy, which leverages multiple types of learned point embeddings, significantly improves instance segmentation. Experiments on the NPM3D urban mobile mapping dataset and the FOR-instance forest dataset demonstrate the effectiveness and versatility of the proposed strategy.