Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

The Norwegian Institute of Bioeconomy Research (NIBIO) has been working on many fronts to promote sustainable agriculture. As part of the Department of Biogeochemistry and Soil Quality, I will present initiatives and progress made by the NIBIO Institute in promoting soil organic matter persistence and sustainable agriculture in Norway and worldwide. Two major challenges have been targeted with a focus on Norway: waste generation by several industries (e.g., agriculture, forestry, and fishery) and the short time of the cropping season in the country due to climatic constraints. To solve these issues, we are working on several projects focused on re-utilizing waste products by producing organic fertilizers, optimizing these fertilizers (e.g., biochar N-enrichment), and improving current cropping systems with crop diversification. Our main objective is to investigate the benefits of these practices in improving soil quality and crop productivity and enhancing soil organic matter persistence. Our work on soil science also goes beyond Norwegian and Nordic conditions. Among our international collaborations, we are currently working on a multi-institution bilateral project between China and Norway to promote the restoration of a semi-arid ecosystem in Inner Mongolia. We are also often engaging in project proposals for promoting sustainable agriculture in tropical regions. To develop these ideas, we promote a combined approach of spectroscopy techniques in collaboration with other institutions, such as nanoscale secondary ion mass spectrometry (NanoSIMS) in partnership with the Technical University of Munich (TUM) and NMR spectroscopy in partnership with the National Research Council of Italy (CNR-Pisa). Also, our research facilities count on good infrastructure, focusing on incubations with 13C and 15N labeled amendments and 13C pulse labeling.

To document

Abstract

The spatial distribution of organic substrates and microscale soil heterogeneity significantly influence organic matter (OM) persistence as constraints on OM accessibility to microorganisms. However, it is unclear how changes in OM spatial heterogeneity driven by factors such as soil depth affect the relative importance of substrate spatial distribution on OM persistence. This work evaluated the decomposition and persistence of 13C and 15N labeled water-extractable OM inputs over 50 days as either hotspot (i.e., pelleted in 1 – 2 mm-size pieces) or distributed (i.e., added as OM < 0.07 µm suspended in water) forms in topsoil (0-0.2 m) and subsoil (0.8-0.9 m) samples of an Andisol. We observed greater persistence of added C in the subsoil with distributed OM inputs relative to hotspot OM, indicated by a 17% reduction in cumulative mineralization of the added C and a 10% higher conversion to mineral-associated OM. A lower substrate availability potentially reduced mineralization due to OM dispersion throughout the soil. NanoSIMS (nanoscale secondary ion mass spectrometry) analysis identified organo-mineral associations on cross-sectioned aggregate interiors in the subsoil. On the other hand, in the topsoil, we did not observe significant differences in the persistence of OM, suggesting that the large amounts of particulate OM already present in the soil outweighed the influence of added OM spatial distribution. Here, we demonstrated under laboratory conditions that the spatial distribution of fresh OM input alone significantly affected the decomposition and persistence of OM inputs in the subsoil. On the other hand, spatial distribution seems to play a lower role in topsoils rich in particulate OM. The divergence in the influence of OM spatial distribution between the top and subsoil is likely driven by differences in soil mineralogy and OM composition.

To document

Abstract

The molecular diversity of the source substrate has been regarded as a significant controller of the proportion of plant material that is either mineralized or incorporated into soil organic matter (SOM). However, quantitative parameters to express substrate molecular diversity remain elusive. In this research, we fractionated leaves, twigs, bark, and root tissues of 13C-enriched eucalypt seedlings into hot water extractables (HWE), total solvent (acetone) extractables (TSE), a cellulosic fraction (CF), and the acid unhydrolyzable residue (AUR). We used 13C NMR spectroscopy to obtain a molecular diversity index (MDI) based on the relative abundance of carbohydrate, protein, lignin, lipid, and carbonyl functional groups within the biochemical fractions. Subsequently, we obtained artificial plant organs containing fixed proportions (25%) of their respective biochemical fractions to be incubated with soil material obtained from a Haplic Ferralsol for 200-days, under controlled temperature (25 ± 1 ◦C) and moisture adjusted to 70–80% of the soil water holding capacity. Our experimental design was a randomized complete block design, arranged according to a factorial scheme including 4 plant organs, 4 biochemical fractions, and 3 blocks as replicates. During the incubation, we assessed the evolution of CO2 from the microcosms after 1, 2, 3, 4, 7, 10, 13, 21, 28, 38, 45, 70, 80, 92, 112, 148, 178 and 200 days from the start of the incubation. After the incubation, soil subsamples were submitted to a density fractionation to separate the light fraction of SOM (LFOM) i.e., with density <1.8 g cm 3. The heavy fraction remaining was submitted to wetsieving yielding the sand-sized SOM (SSOM) and the mineral-associated SOM (MAOM), with particle-size greater and smaller than 53 μm, respectively. We found that HWE and AUR exhibited comparatively higher MDIs than the TSE and CF. During the incubation, HWE and CF were the primary sources of 13C-CO2 from all plant organs and after 92 days, the respiration of the TSE of bark and roots increased. Otherwise, the AUR contributed the least for the release of 13C-CO2. There were no significant relationships between the MDI and the amount of 13C transferred into the LFOM or SSOM. Otherwise, the transfer of 13C into the MAOM increased as a linear-quadratic function of MDI, which in turn was negatively correlated with the total 13C-CO2 loss. Overall, the MDI exerted a stronger control on the 13C-labeled MAOM than on 13C-CO2 emissions, highlighting the need to improve our ability to distinguish and quantify direct plant inputs from those of microbial origin entering soil C pools.

To document

Abstract

The lack of high-grade scandium (Sc) ores and recovery strategies has stimulated research on the exploitation of non-ore-related secondary sources that have great potential to safeguard the critical raw materials supply of the EU’s economy. Waste materials may satisfy the growing global Sc demand, specifically residues from titanium dioxide (TiO2) production. New technologies are being developed for the recovery of Sc from such residues; however, the possible environmental impacts of intermediary products and residues are usually not considered. In order to provide a comprehensive ecotoxicity characterisation of the wastes and intermediate residues resulting from one promising new technology, acid-resistant nanofiltration (arNF), a waste-specific ecotoxicity toolkit was established. Three ecotoxicity assays were selected with specific test parameters providing the most diverse outcome for toxicity characterisation at different trophic levels: Aliivibrio fischeri (bacteria) bioluminescence inhibition (30 min exposure), Daphnia magna (crustacean) lethality and immobilisation (24 h exposure) and Lemna minor (plant) growth inhibition with determination of the frond number (7 d exposure). According to our results, the environmental impact of the generated intermediate and final residues on the aquatic ecosystem was mitigated by the consecutive steps of the filtration methods applied. High and statistically significant toxicity attenuation was achieved according to each test organism: toxicity was lowered based on EC20 values, according to the A. fischeri bioluminescence inhibition assay (by 97%), D. magna lethality (by 99%) and L. minor frond number (by 100%), respectively, after the final filtration step, nanofiltration, in comparison to the original waste. Our results underline the importance of assessing chemical technologies’ ecotoxicological and environmental impacts with easy-to-apply and cost-effective test methods to showcase the best available technologies.

To document

Abstract

Bauxite residue (red mud) is considered an extremely alkaline and salty environment for the biota. We present the first attempt to isolate, identify and characterise microbes from Hungarian bauxite residues. Four identified bacterial strains belonged to the Bacilli class, one each to the Actinomycetia, Gammaproteobacteria, and Betaproteobacteria classes, and two to the Alphaproteobacteria class. All three identified fungi strains belonged to the Ascomycota division. Most strains tolerated pH 8–10 and salt content at 5–7% NaCl concentration. Alkalihalobacillus pseudofirmus BRHUB7 and Robertmurraya beringensis BRHUB9 can be considered halophilic and alkalitolerant. Priestia aryabhattai BRHUB2, Penicillium chrysogenum BRHUF1 and Aspergillus sp. BRHUF2 are halo- and alkalitolerant strains. Most strains produced siderophores and extracellular polymeric substances, could mobilise phosphorous, and were cellulose degraders. These strains and their enzymes are possible candidates for biotechnological applications in processes requiring extreme conditions, e.g. bioleaching of critical raw materials and rehabilitation of alkaline waste deposits.