Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

To document

Abstract

This study evaluated 22 spring-type faba bean cultivars in the main areas for cultivation of faba bean in Norway to assess the variation of 14 faba bean traits due to cultivar (G), environment (E), and their interaction (G × E), and to assess their stability across environments by using the additive main effects and multiplicative interaction (AMMI) analysis and coefficient of variation (CV). Significant G, E, and G × E effects were found for most traits, with environment accounting for much of the variance in yield and the growing degree days (GDD) to different developmental stages. Yield was highly correlated with thousand kernel weight (TKW) and GDD to BBCH 89 (maturation). The stability of the cultivars was studied for yield, TKW, and GDD to BBCH 89. Stability analysis using the AMMI stability value, yield stability index, CV, and the average sum of ranks identified Birgit, Stella, Bobas, and Macho as the most stable high-yielding cultivars across environments, achieving a mean yield of 6–6.4 tons ha−1. Bobas, Macho, Stella, and Yukon had the most stable TKW (612–699 g) and Bobas, Capri, Trumpet, and Vertigo were the most stable regarding GDD to BBCH 89 (1257°C days, with a base temperature of 5°C). These stable cultivars can be utilized in breeding programs to achieve high and stable faba bean yield in the main growing areas of Norway and other Nordic-Baltic countries.

To document

Abstract

Herbivores play a crucial role in shaping tundra ecosystems through their effects on vegetation, nutrient cycling, and soil abiotic factors. Understanding their habitat use, co-occurrence, and overlap is therefore essential for informing ecosystem-based management and conservation. In the High Arctic, only a marginal proportion of the land area is vegetated, and climate change is impacting herbivore population sizes and their habitats. In this study, we assessed the spatial habitat overlap of a vertebrate herbivore community based on: 1) regional predictive summer habitat suitability models for the resident Svalbard reindeer (Rangifer tarandus platyrhynchus), resident Svalbard rock ptarmigan (Lagopus muta hyperborea), and the migratory pink-footed goose (Anser brachyrhynchus), and 2) presence of fecal pellets, reflecting the annual habitat use of reindeer, ptarmigan, and geese, including the pink-footed goose and barnacle goose (Branta leucopsis). Our findings revealed that only small proportions of the available land cover (~ 12516 km2; all land area excluding glaciers and freshwater) are suitable for each of the species (habitat suitability [HS] > 0.5): reindeer (22%), ptarmigan (11%), and pink-footed goose (4%). Overlapping suitable habitat [HS > 0.5] for reindeer and goose accounted for only 3% of the total vegetated area (~ 8848 km2) and was primarily found in heath and moist habitats dominated by mosses, graminoids, and herbaceous plants. The overlapping suitable habitat for reindeer and ptarmigan covered 8% of the vegetated area, predominantly in higher elevation ridges with vegetation on drier substrates. The shared habitat for ptarmigan and goose, and all three species of herbivores, was less than 1% of the vegetated area. Additionally, an assessment of fecal pellets suggested that the highest overlap in habitat use among reindeer and goose occurred in bird cliff moss tundra, followed by moss tundra and heath habitats. The small proportion of the vegetated area suitable for all three herbivores indicates a high degree of habitat differentiation. Therefore, different habitats need to be considered for the management and conservation of resident and migratory herbivore species in this High Arctic Archipelago. Moreover, our results underscore the importance of the small but productive parts of the landscape that were used by all herbivores. Goose, habitat suitability, management, ptarmigan, reindeer

Abstract

Carbon content is a key property of soils with importance for all ecosystem functions. Measures to increase soil carbon storage are suggested with the aim to compensate for agricultural emissions. In Norway, where soils have relatively high carbon content because of the cold climate, adapting management practices that prevent the loss of carbon to the atmosphere in response to climate change is also important. This work presents an overview of the potential for carbon sequestration in Norway from a wide range of agricultural management practices and provides recommendations based on certainty in the reported potential, availability of the technology, and likelihood for implementation by farmers. In light of the high priority assigned to increased food production and degree of self-sufficiency in Norway, the following measures were considered: (1) utilization of organic resources, (2) use of biochar, (3) crop diversification and the use of cover crops, (4) use of plants with larger and deeper root systems, (5) improved management of meadows, (6) adaptive grazing of productive grasslands (7) managing grazing in extensive grasslands, (8) altered tillage practices, and (9) inversion of cultivated peat with mineral soil. From the options assessed, the use of cover crops scored well on all criteria evaluated, with a higher sequestration potential than previously estimated (0.2 Mt CO2-equivalents annually). Biochar has the largest potential in Norway (0.9 Mt CO2-equivalents annually, corresponding to 20% of Norwegian agricultural emissions and 2% of total national emissions), but its readiness level is not yet achieved despite interest from industry to apply this technology at large scale. Extensive grazing and the use of deep-rooted plants also have the potential for increasing carbon storage, but there is uncertainty regarding their implementation and the quantification of effects from adapting these measures. Based on the complexities of implementation and the expected impacts within a Norwegian context, promising options with substantial payoff are few. This work sheds light on the knowledge gaps remaining before the presented measures can be implemented.

2023