Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2008
Abstract
Life on earth depends on water and where running water occurs on earth, there is life. Nevertheless, existing modelling approaches in hydrology almost completely neglect the biological aspects of water flow. We claim that ignoring biological behaviour and interaction in catchment runoff modelling is too restrictive, and that computational theories can be used to formalise behaviour and interaction and model the biological impact on runoff. To demonstrate this, starting with a general classification of catchment behaviour, as documented in runoff data, we will use symbolic dynamics to quantify randomness and complexity in the time series. This approach shows that runoff records from very different catchments show common behaviour. This behaviour can be fitted to a one-parametric curve, stratified into three regions. In this manner, it becomes possible to represent and classify types of interactive behaviour that cannot be generated algorithmically. This suggests that physically based catchment models do not properly represent all types of interactive behaviour, and that signatures of biological interaction are present in runoff data.
Authors
Tore SkrøppaAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Halvor SolheimAbstract
Climate change may influence in a worse manner for the forests in various ways. Some pathogens may increase their importance and new may arrive. Root and butt rot is the most serious problem in Norway spruce forests. In mean more than every fourth tree is infested when harvested. Dryer summers may give increased frequency of rot caused by Heterobasidion. In addition Armillaria spp may gain change in weather condition both as root rot and in connection with a syndrome together with drought and bark beetles. More unstable winter climate may give increase of Gremmeniella attack on Scots pine. Longer and warmer growth season will give many pathogens better condition. Among those is Ophiostoma novo-ulmi causing Dutch elm disease which is lasting in south eastern Norway at a rather low frequency and the volume of elm is not lower than for 15 years ago. In which way the newly introduced Chalara fraxinea will behave in Norway is uncertain, but a better growth season will probably also influence on the possibility to be spread all over Norway where ash are growing.
Abstract
No abstract has been registered
Authors
Stig Morten Thorsen Lars Egil Haugen Mats HöglindAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
G Søgaard Ø. Johnsen Jarle Halvard Nilsen Olavi JunttilaAbstract
No abstract has been registered
Abstract
Detailed knowledge of temperature effects on the timing of dormancy development and bud burst will help evaluate the impacts of climate change on forest trees. We tested the effects of temperature applied during short-day treatment, duration of short-day treatment, duration of chilling and light regime applied during forcing on the timing of bud burst in 1- and 2-year-old seedlings of nine provenances of Norway spruce (Picea abies (L.) Karst.). High temperature during dormancy induction, little or no chilling and low temperature during forcing all delayed dormancy release but did not prevent bud burst or growth onset provided the seedlings were forced under long-day conditions. Without chilling, bud burst occurred in about 20% of seedlings kept in short days at 12 C, indicating that young Norway spruce seedlings do not exhibit true bud dormancy. Chilling hastened bud burst and removed the long photoperiod requirement, but the effect of high temperature applied during dormancy induction was observed even after prolonged chilling. Extension of the short-day treatment from 4 to 8 or 12 weeks hastened bud burst. The effect of treatments applied during dormancy development was larger than that of provenance; in some cases no provenance effect was detected, but in 1-year-old seedlings, time to bud burst decreased linearly with increasing latitude of origin. Differences among provenances were complicated by different responses of some origins to light conditions under long-day forcing. In conclusion, timing of bud burst in Norway spruce seedlings is significantly affected by temperature during bud set, and these effects are modified by chilling and environmental conditions during forcing.
Authors
Bjørn ØklandAbstract
In recent years several forest insects have been recorded as newcomers or as more abundant than before towards northern latitudes and higher elevations in Norway. Such observations are from different groups of forest insect, including herbivorous geometrids, phloeophagous bark beetles and insects in cone seed .......