Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

Transpiration makes up the bulk of total evaporation in forested environments yet remains challenging to predict at landscape-to-global scales. We harnessed independent estimates of daily transpiration derived from co-located sap flow and eddy-covariance measurement systems and applied the triple collocation technique to evaluate predictions from big leaf models requiring no calibration. In total, four models in 608 unique configurations were evaluated at 21 forested sites spanning a wide diversity of biophysical attributes and environmental backgrounds. We found that simpler models that neither explicitly represented aerodynamic forcing nor canopy conductance achieved higher accuracy and signal-to-noise levels when optimally configured (rRMSE = 20%; R2 = 0.89). Irrespective of model type, optimal configurations were those making use of key plant functional type dependent parameters, daily LAI, and constraints based on atmospheric moisture demand over soil moisture supply. Our findings have implications for more informed water resource management based on hydrological modeling and remote sensing.

To document

Abstract

Using periodic measurements from permanent plots in non-thinned and thinned Norway spruce (Picea abies (L.) H. Karst.) stands in Norway, individual-tree growth models were developed to predict annual diameter increment, height increment, and height to crown base increment. Based on long-term data across a range of thinning regimes and stand conditions, alternative approaches for modeling response to treatment were assessed. Dynamic thinning response functions in the form of multiplicative modifiers that predict no effect at the time of thinning, a rapid increase followed by an early maximum before the effect gradually declines to zero could not be fitted to initially derived baseline models without thinning related predictors. However, alternative approaches were used and found to perform well. Specifically, indicator variables representing varying time periods after thinning were statistically significant and behaved in a robust manner as well as consistent with general expectations. In addition, they improved overall prediction accuracy when incorporated as fixed effects into the baseline models for diameter and height to crown base increment. Further, more simply, including exponentially decreasing multiplicative thinning response functions improved prediction accuracy for height increment and height to crown base increment. Irrespective of studied attribute and modelling approach, improvement in performance of these extended models was relatively limited when compared to the corresponding baseline models and more pronounced in trees from thinned stands. We conclude that the largely varying and often multi-year measurement intervals of the periodic data used in this study likely prevented the development of more sophisticated thinning response functions. However, based on the evaluation of the final models’ overall performance such complex response functions may not to be necessary to reliably predict individual tree growth after thinning for certain conditions or species, which should be further considered in future analyses of similar nature.

To document

Abstract

To mitigate climate change, several European countries have launched policies to promote the development of a renewable resource-based bioeconomy. These bioeconomy strategies plan to use renewable biological resources, which will increase timber and biomass demands and will potentially conflict with multiple other ecosystem services provided by forests. In addition, these forest ecosystem services (FES) are also influenced by other, different, policy strategies, causing a potential mismatch in proposed management solutions for achieving the different policy goals. We evaluated how Norwegian forests can meet the projected wood and biomass demands from the international market for achieving mitigation targets and at the same time meet nationally determined targets for other FES. Using data from the Norwegian national forest inventory (NFI) we simulated the development of Norwegian forests under different management regimes and defined different forest policy scenarios, according to the most relevant forest policies in Norway: national forest policy (NFS), biodiversity policy (BIOS), and bioeconomy policy (BIES). Finally, through multi-objective optimization, we identified the combination of management regimes matching best with each policy scenario. The results for all scenarios indicated that Norway will be able to satisfy wood demands of up to 17 million m3 in 2093. However, the policy objectives for FES under each scenario caused substantial differences in terms of the management regimes selected. We observed that BIES and NFS resulted in very similar forest management programs in Norway, with a dominance of extensive management regimes. In BIOS there was an increase of set aside areas and continuous cover forestry, which made it more compatible with biodiversity indicators. We also found multiple synergies and trade-offs between the FES, likely influenced by the definition of the policy targets at the national scale.

To document

Abstract

The British forestry sector lacks reliable dynamic growth models for stands of improved Sitka spruce, the most important commercial forest type in Great Britain. The aim of this study is to fill this gap by trialling a new modelling framework and to lay the foundations of a future dynamic growth simulator for that forest type. First, we present single tree diameter and height increment models that are climate sensitive and include explicit competition effects. The predictions from the increment models are pooled to project diameter and height at a given age. These projections are then used as inputs to an integrated taper model from which stochastic tree volume predictions are obtained. Retrospective data from over 1400 trees collected in two extensive genetic trials in Scotland and Wales were used for the purposes of this study. Diameter increment and height increment predictions were highly accurate and diameter and height projections proved consistent. The predicted volume at the time of harvesting also exhibited a high degree of accuracy, which shows the robustness of our approach. Further data will be needed in the future to recalibrate the present models and extend their range of validity to the whole of Great Britain.

To document

Abstract

There is debate on which tree species can sustain forest ecosystem services in a drier and warmer future. In Europe, the use of non-native timber species, such as Douglas fir (Pseudotsuga menziesii [Mirb.] Franco), is suggested as a solution to mitigate climate change impacts because of their high growth resilience to drought. However, the biogeographical, climatic and ecological limits for widely planted timber species still need to be defined. Here, we study the growth response to climate variables and drought of four Douglas fir plantations in northern Spain subjected to contrasting climate conditions. Further, we measure wood density in one of the sites to obtain a better understanding of growth responses to climate. Correlative analyses and simulations based on the Vaganov–Shaskin process-based model confirm that growth of Douglas fir is constrained by warm and dry conditions during summer and early autumn, particularly in the driest study site. Minimum wood density increased in response to dry spring conditions. Therefore, planting Douglas fir in sites with a marked summer drought will result in reduced growth but a dense earlywood. Stands inhabiting dry sites are vulnerable to late-summer drought stress and can act as “sentinel plantations”, delineating the tolerance climate limits of timber species.