Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

Abstract

The outcome of a compatible mycorrhizal interaction is different from that in a compatible plant–pathogen interaction; however, it is not clear what mechanisms are used to evade or suppress the host defence. The aim of this work is to reveal differences between the interaction of Norway spruce roots to the pathogen Ceratocystis polonica and the ectomycorrhizal Laccaria bicolor, examine if L. bicolor is able to evade inducing host defence responses typically induced by pathogens, and test if prior inoculation with the ectomycorrhizal fungus affects the outcome of a later challenge with the pathogen. The pathogen was able to invade the roots and caused extensive necrosis, leading to seedling death, with or without prior inoculation with L. bicolor. The ectomycorrhizal L. bicolor colonised primary roots of the Norway spruce seedlings by partly covering, displacing and convoluting the cells of the outer root cortex, leaving the seedlings healthy. We detected increased total peroxidase activity, and staining indicating increased lignification in roots as a response to C. polonica. In L. bicolor inoculated roots there was no increase in total peroxidase activity, but an additional highly acidic peroxidase isoform appeared that was not present in healthy roots, or in roots invaded by the pathogen. Increased protease activity was detected in roots colonised by C. polonica, but little protease activity was detected in L. bicolor inoculated roots. These results suggest that the pathogen efficiently invades the roots despite the induced host defence responses, while L. bicolor suppresses or evades inducing such host responses in this experimental system.

Abstract

A crucial consideration for strawberry producers in Norway and other northern countries is winter freezing damage. A long-term goal of the Norwegian strawberry breeding is to increase winter hardiness and to improve fruit quality. Due to the complexity involved in regulating and enhancing freezing tolerance, the progress in the improvement of cultivars using traditional screening methods have had limited success. Thus, the development of molecular markers for freezing hardiness would facilitate the selection work for this trait. In this effort, we have developed and adopted state-of-art molecular tools to investigate cold response in strawberry plants during the acclimation phase resulting in the identification of a large number of genes, proteins, and distinct metabolites that correspond to cold/freezing tolerance in strawberry. To identify proteins responsible for freezing tolerance in strawberry we have examined alterations in protein levels in strawberry varieties that differ in cold tolerance using either 2-DE gel analysis followed by LC-MS/MS analysis or a shotgun MS/MS approach. Proteomic analysis suggested 30 potential biomarkers that showed significant changes in the cultivated strawberry in response to cold. In addition, GC-MS-based metabolite profiling revealed the up-regulation of carbohydrates, polyols, amino acids, TCA intermediates, and other distinct secondary metabolites after cold treatment. Transcriptional analysis of the cold acclimated samples also confirmed the regulation upon cold-treatment with varietal differences in strawberry. Moreover, several F2-populations from the model F. vesca parents diverging in cold tolerance have been developed in order to facilitate mapping of QTLs by performing GBS analyses. The knowledge attained from these endeavors is expected to expedite breeding of strawberries to achieve freezing tolerant lines and provide an integrative understanding of the molecular pathways that underlie this characteristic. * Rohloff et al. (2012) Metabolite profiling reveals novel multi-level cold responses in the model Fragaria vesca. Phytochemistry 79:99-109. * Koehler et al. (2012) Proteomic study of low temperature responses in strawberry cultivars (Fragaria x ananassa) that differ in cold tolerance. Plant Physiology 159:1787–1805 * Davik et al., (2012) Low temperature tolerance in diploid strawberry species (Fragaria ssp.) and its correlation to alcohol dehydrogenase levels, dehydrin levels, and central metabolism constituents. Planta (in press; DOI: 10.1007/s00425-012-1771-2).

Abstract

In winter fed organic raised sheep inadequate plasma vitamin E levels is common and therefore supplementation is recommended. The objective of the present work was to test the supplementation of natural vitamin E and seaweed meal on the immune status of ewes and their offspring. Forty Norwegian White Sheep ewes were randomly allocated to three supplementation treatments: natural vitamin E, synthetic vitamin E, seaweed meal, and control. The feeding experiment lasted the entire indoor feeding period. Ewes and newborn lambs were vaccinated against different environmental microorganisms and pathogens. Different immunological parameters were measured. Supplementing the ewes with natural vitamin E had positive effect on immunity against Mycobacterium bovis in lambs. Seaweed, on the other hand, had negative effect on the passive transfer of maternal antibodies in lambs the first week after birth. The adaptive immunity was not affected by seaweed supplementation.