Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

To document

Abstract

Common scab (CS) is an important disease and quality problem in potato crops worldwide. CS degrades the appearance of the potato tubers, thereby diminishing market value. Knowledge of CS has expanded considerably over recent years, enabling improved detection of the causal pathogens and increased understanding of mechanisms of pathogenicity, and providing potential methods of modulating pathogen response for disease resistance. However, effective control of this disease remains elusive, and will require increased understanding of both the host and the pathogen. Traditional control strategies such as irrigation and reduced soil pH are not sufficient and often fail. Optimizing environmental conditions for reduction of CS can also lead to favorable conditions for other diseases. The most desirable control method would be disease-resistant potato cultivars. However, no currently available commercial potato cultivar has been shown to be completely resistant to CS. In this review, we provide an overview of potato CS caused by plant pathogenic Streptomyces species, recent research on mechanisms and management of the disease, and knowledge gaps that limit successful control of this ubiquitous and troublesome disease.

Abstract

The agro-ecosystems (e.g. cropping system (tunnel/ greenhouse/ open field, etc.), plant species, cultivar, soil management (fertilization, pH, soil cover, etc.)) has an impact on pests (insects, mites, snails, nematodes, plant diseases and weeds) and the control strategies used. Biological control agents (BCA) can serve as alternatives or as supplements to chemical pesticides. They can reduce the need for chemical treatments and thus the risk of non-target effects to humans and the environment from pesticide use. Further, the use of BCA might help to reduce the risk of pesticide resistance development. The Regulation and use of BCA differs significantly between different European countries, especially for the macroorganisms (insects, mites and nematodes). Norway has its own regulation for macroorganisms, while regulation of microorganisms (fungi, bacteria, viruses and protozoa) is almost the same as for chemical pesticides, and is comparable to the EU regulations. There is a wide range of biological control products available on the international market, and access to these products would benefit Norwegian growers. Norway has, however, a very limited selection of registered biological control products. A new Norwegian project titled “Increasing the use of biological control agents of plant pests” is financed by the Norwegian Ministry of Agriculture and Food. In this project we try to identify the bottlenecks and propose solutions to promote the registration and increase the use of BCA in Norway. A survey has been conducted where experts and agricultural advisors on different cropping systems were asked to prioritize which BCA (products) on the European market should be promoted and registered in Norway (initially against pest insects and mites). Preliminary results from this project will be presented.

To document

Abstract

In 2002, world leaders made a commitment through the Convention on Biological Diversity (CBD), to achieve a significant reduction in the rate of biodiversity loss by 2010. At the Conference of the Parties of the CBD in Nagoya, Japan in 2010, the target was renewed for 2020. We have developed a Biodiversity Change Index (BCI) to help measure progress towards this target. The BCI is constructed with a two-dimensional resolution, allowing for a direct evaluation of the relative importance of changes in quantity and quality, respectively, to the overall change in biodiversity. Quantity is measured as the area of a specified habitat type and quality as the abundance of indicator species and other habitat quality parameters, such as the proportion of old trees or dead wood in forests. The BCI enables easy comparison of changes in biodiversity between different habitat types and between different regions and nations. We illustrate the use of BCI by calculating the index for the Nordic countries for two common habitat types, farmland and forest, and one habitat type of similar importance in the northern hemisphere; mires. In the period 1990–2005 declines in biodiversity of similar magnitudes are seen for farmland and mires across the Nordic countries, while for forest, trends vary considerably. Our results show that the BCI framework can be a useful tool to communicate the complex issue of biodiversity change in a simple manner. However, in accordance with other studies of biodiversity change we conclude that existing monitoring data are too scarce to consistently calculate BCI for all habitat types in all Nordic countries. In order to reasonably evaluate changes in biodiversity, further efforts towards monitoring programmes to obtain reliable and quality assured data on biodiversity at acceptable spatial and temporal resolutions are needed. Moreover, common methods to apply and harmonise data from different monitoring schemes should be developed.

Abstract

In 2002, world leaders made a commitment through the Convention on Biological Diversity (CBD), to achieve a significant reduction in the rate of biodiversity loss by 2010. At the Conference of the Parties of the CBD in Nagoya, Japan in 2010, the target was renewed for 2020. We have developed a Biodiversity Change Index (BCI) to help measure progress towards this target. The BCI is constructed with a twodimensional resolution, allowing for a direct evaluation of the relative importance of changes in quantity and quality, respectively, to the overall change in biodiversity. Quantity is measured as the area of a specified habitat type and quality as the abundance of indicator species and other habitat quality parameters, such as the proportion of old trees or dead wood in forests. The BCI enables easy comparison of changes in biodiversity between different habitat types and between different regions and nations. We illustrate the use of BCI by calculating the index for the Nordic countries for two common habitat types, farmland and forest, and one habitat type of similar importance in the northern hemisphere; mires. In the period 1990–2005 declines in biodiversity of similar magnitudes are seen for farmland and mires across the Nordic countries, while for forest, trends vary considerably. Our results show that the BCI framework can be a useful tool to communicate the complex issue of biodiversity change in a simple manner. However, in accordance with other studies of biodiversity change we conclude that existing monitoring data are too scarce to consistently calculate BCI for all habitat types in all Nordic countries. In order to reasonably evaluate changes in biodiversity, further efforts towards monitoring programmes to obtain reliable and quality assured data on biodiversity at acceptable spatial and temporal resolutions are needed. Moreover, common methods to apply and harmonise data from different monitoring schemes should be developed.