Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

Abstract

No abstract has been registered

To document

Abstract

Dothistroma needle blight (DNB) is one of the most important diseases of pine. Although its notoriety stems from Southern Hemisphere epidemics in Pinus radiata plantations, the disease has increased in prevalence and severity in areas of the Northern Hemisphere, including Europe, during the last two decades. This increase has largely been attributed to expanded planting of susceptible hosts, anthropogenic dispersal of the causative pathogens and changes in climate conducive to disease development. The last comprehensive review of DNB was published in 2004, with updates on geographic distribution and host species in 2009. Importantly, the recognition that two species, Dothistroma septosporum and D. pini, cause DNB emerged only relatively recently in 2004. These two species are morphologically very similar, and DNA-based techniques are needed to distinguish between them. Consequently, many records of host species affected or geographic location of DNB prior to 2004 are inconclusive or even misleading. The objectives of this review were (i) to provide a new database in which detailed records of DNB from 62 countries are collated; (ii) to chart the current global distribution of D. septosporum and D. pini; (iii) to list all known host species and to consider their susceptibility globally; (iv) to collate the published results of provenance trials; and (v) to consider the effects of site factors on disease incidence and severity. The review shows that DNB occurs in 76 countries, with D. septosporum confirmed to occur in 44 and D. pini in 13. There are now 109 documented Pinaceae host taxa for Dothistroma species, spanning six genera (Abies, Cedrus, Larix, Picea, Pinus and Pseudotsuga), with Pinus being the dominant host genus, accounting for 95 host taxa. The relative susceptibilities of these hosts to Dothistroma species are reported, providing a resource to inform species choice in forest planting. Country records show that most DNB outbreaks in Europe occur on Pinus nigra and its subspecies. It is anticipated that the collaborative work described in this review will both underpin a broader global research strategy to manage DNB in the future and provide a model for the study of other forest pathogens.

To document

Abstract

We review the experiences and challenges that researchers can face when conducting contingent valuation studies in developing countries. We discuss these challenges based on our own experiences of conducting field-contingent valuation studies about genetically modified rice in five developing countries that represent different regions of the world and diverse cultures; we also base our discussion on results from a survey we conducted of agricultural and applied economists regarding their own experiences. The issues covered include the selection and training of local personnel, the recruitment of participants, sampling challenges, participants' compensation, survey methods and implementation, elicitation methods, the literacy rate of the population, and security/safety issues in developing countries. We also discuss the implications of our findings to other well-established stated-preference methods such as choice experiments.

To document

Abstract

1. Push-pull or stimulo-deterrent cropping systems combine a trap crop or other attractant or arrestant stimulus distant from the crop and a deterrent or repellent near or within the target crop, to divert pests, reducing their populations on the target crop. Although the concept is decades old, there are few successful applications in pest management. 2. In this article, we address this shortcoming by offering a mechanistic conceptual framework of push-pull systems, based on the cues, sensory modalities, pest behaviours and spatial ranges over which they can occur during host selection and that can influence pest distribution. 3. We review published work on push-pull systems in the light of this framework, finding that the literature tends to focus on longer-range stimulo-deterrence strategies rather than the full range of cues involved and modalities that can come into play, with imperfect understanding of cues involved in most systems. 4. The imbalance in research emphasis and incomplete understanding of push-pull mechanisms suggest opportunities to improve and broaden the palette of potential push-pull technologies. 5. The framework also helps clarify other aspects important for achieving success with push-pull methods, including the role of synergy, deployment geometry, intraspecific variability and the wider arthropod community in these systems. 6. Synthesis and applications. A conceptual and mechanistic framework is provided for the development of push-pull or stimulo-deterrent pest management approaches. This framework informs a proposed research agenda for designing push-pull technologies. That agenda involves including all cues and modalities, exploiting synergies, tuning deployment geometry in accordance with these factors. It also considers pest and crop dynamics and the arthropod community of the system. The framework can benefit managers by helping them to consider more fully the behaviour of the target pests when creating crop and non-crop geometries to achieve push-pull benefits. Research-based push-pull systems will be better implemented and modified by producers if they understand how insects respond to sources of push and pull in the system, allowing effective monitoring and fine-tuning to increase effectiveness of this specialized component of integrated pest management.