Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Authors
O. Janne Kjønaas Sunil Mundra Teresa Gómez de la Bárcena Mette Hansen Gro Hylen Håvard KauserudAbstract
No abstract has been registered
Authors
O. Janne Kjønaas Sunil Mundra Teresa Gómez de la Bárcena Mette Hansen Gro Hylen Håvard KauserudAbstract
Tree species change has been suggested as one of the government policies to mitigate climate change in Nor-way with the aim to increase the annual uptake of CO2 and the long-term storage of carbon (C) in forests. The strategy includes replacing native, deciduous species with fast-growing species, mainly Norway spruce. A shift in tree species is expected to affect the pools and fluxes of C in the stand as well as the microbial community. As part of the BalanC project, we assess C storage related to shift in tree species cover in western Norway and whether a corresponding shift in soil microbial communities are happening. The study aim at integrating results on soil respiration, C mineralization, soil stability, diversity of bacteria, fungi and micro-eukaryotes, soil nutrient pools, litter inputs and edaphic factors at the stand level in order to identify key drivers for changes in the soil C stocks. Fifteen paired plots of native birch and planted Norway spruce at five locations were sampled. Prelimi-nary results suggests a redistribution of C from the mineral soil to the forest floor in the spruce stands, with minor changes in the total soil C pools over the 45-60 years since the tree species change. The in situ soil respi-ration and heterothropic respiration, as well as C mineralization rates, were higher in birch than in spruce stands. Differences in C mineralization rates attenuate with depth between forest types. The microbial com-munities of the three organismal groups were all strongly structured along the vertical depth.
Authors
Tore SkrøppaAbstract
No abstract has been registered
Authors
Liviu Nichiforel Kevin Keary Philippe Deuffic Gerhard Weiss Bo Jellesmark Thorsen Georg Winkel Mersudin Avdibegović Zuzana Dobsinska Diana Feliciano Paola Gatto Elena Górriz Mifsud Marjanke Hoogstra-Klein Michal Hrib Teppo Hujala Laszlo Jager Vilém Jarský Krzysztof Jodlowski Anna Lawrence Diana Lukmine Špela Pezdevšek Malovrh Jelena Nedeljkovic Dragan Nonic Silvija Krajter Ostoic Klaus Pukall Jacques Rondeux Theano Samara Zuzana Sarvašová Ramona Elena Scriban Rita Šilingienė Milan Sinko Makedonka Stojanovska Vladimir Stojanovski Nickola Stoyanov Meelis Teder Birger Vennesland Lelde Vilkriste Erik Wilhelmsson Jerylee Wilkes-Allemann Laura BouriaudAbstract
Private forests are widespread in Europe providing a range of ecosystem services of significant value to society, and there are calls for novel policies to enhance their provision and to face the challenges of environmental changes. Such policies need to acknowledge the importance of private forests, and importantly they need to be based on a deep understanding of how property rights held by private forest owners vary across Europe. We collected and analysed data on the content of property rights based on formal legal requirements existing in 31 European jurisdictions. To allow a comparison across jurisdictions, we constructed an original Property Rights Index for Forestry encompassing five rights domains (access, withdrawal, management, exclusion and alienation). We documented substantial variation of the private forest owners’ rights, and notably to i) make decisions in operational management and the formulation of management goals, ii) withdraw timber resources from their forest, and iii) exclude others from the use of forest resources. We identified broad relations between the scope for decision making of private forest owners and jurisdictions’ former socio-political background and geographical distribution. The variation in the content of property rights has implications for the implementation of international environmental policies, and stresses the need for tailored policy instruments, when addressing European society’s rural development, the bioeconomy, climate change mitigation measures and nature protection strategies.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Esther BloemAbstract
No abstract has been registered
Authors
Anne-Grete Roer Hjelkrem Heidi Udnes Aamot Guro Brodal Einar Strand Torfinn Torp Simon G. Edwards Ruth Dill-Macky Ingerd Skow HofgaardAbstract
High concentrations of the mycotoxins HT-2 and T-2 (HT2 + T2), primarily produced by Fusarium langsethiae, have occasionally been detected in Norwegian oat grains. In this study, we identified weather variables influencing accumulation of HT2 + T2 in Norwegian oat grains. Oat grain samples from farmers’ fields were collected together with weather data (2004–2013). Spearman rank correlation coefficients were calculated between the HT2 + T2 contamination in oats at harvest and a range of weather summarisations within estimated phenological windows of growth stages in oats (tillering, flowering etc.). Furthermore, we developed a mathematical model to predict the risk of HT2 + T2 in oat grains. Our data show that adequate predictions of the risk of HT2 + T2 in oat grains at harvest can be achieved, based upon weather data observed during the growing season. Humid and cool conditions, in addition to moderate temperatures during booting, were associated with increased HT2 + T2 accumulation in harvested oat grains, whereas warm and humid weather during stem elongation and inflorescence emergence, or cool weather and absence of rain during booting reduced the risk of HT2 + T2 accumulation. Warm and humid weather immediately after flowering increased the risk, while moderate to warm temperatures and absence of rain during dough development, reduced the risk of HT2 + T2 accumulation in oat grains. Our data indicated that HT2 + T2 contamination in oats is influenced by weather conditions both pre- and post-flowering. These findings are in contrast with a previous study examining the risk of deoxynivalenol contamination in oat reporting that toxin accumulation was mostly influenced by weather conditions from flowering onwards.
Authors
Andre Acksel Luise Giani Carolin Stasch Peter Kühn Sebastian Eiter Kerstin Potthoff Tom Regier Peter LeinweberAbstract
Some previous studies showed that the formation of several deep dark humus-rich topsoils in Northern Europe was strongly influenced by the application of different organic materials by anthropogenic activities in former times. Such topsoils classified as plaggic Anthrosols also occurred in the Jæren region in SW Norway. However, source material and formation time of these Plaggic Anthrosols have not yet been clarified. Close to this region we found further humus-rich topsoils in the Karmøy municipality (2 sites at main island of Karmøy and 1 site at Feøy). These soils show a thick humus-rich topsoil up to 30 cm, and their formation cannot only be explained by natural conditions. We analyzed the molecular signature of the soil organic matter (SOM) by benzene polycarboxylic acids (BPCA), non-targeted bulk SOM mass spectrometry, δ34S and 14C AMS dating in order to determine source materials and the age of the SOM. The black carbon (BC) contents of the plaggic soils in Jæren (mean 3.4 g kg−1) deliver clear evidence for inputs of combustion residues from ancient fire management and/or from settlements. The C-XANES and Py-FIMS-spectra reveal relative enrichments of aromatic C and heterocyclic N compounds in the plaggic soils corresponding to the BC contents. In contrast, the humus-rich topsoils in Karmøy seem to be unaffected by fire management due to the low BC contents (mean 0.6 g kg−1) and the relative low portions of aromatic C and heterocyclic N compounds from C-XANES and Py-FIMS. The δ34S isotope signature of the SOM ranged from 10.6 to 15.2‰ in the soils at the islands and 10.0 to 13.5‰ in Jæren, corresponding to the Anthrosols in the Baltic Sea region (Median: δ34S = 11.5‰) and suggest an input of marine biomass (δ34S of seaweed = 20‰). The AMS 14C dating and complementary archaeological literature implied that the soils in Jæren and Karmøy have been formed between the Roman Iron Age (500 BC to AD 500) and the Viking Age (AD 800 to AD 1,000). Our results provide strong evidence for an anthropo-pedogenesis of the humus-rich topsoils in Karmøy and indicate parallels to the plaggic soils in Jæren as well as to Anthrosols in the Baltic Sea region. Therefore, we propose to classify the humus-rich topsoils in Karmøy as Anthrosols.