Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

Abstract

No abstract has been registered

To document

Abstract

Over recent decades, climate change has been particularly severe in the Mediterranean basin, where the intensity and frequency of drought events have had a significant effect on tree growth and mortality. In this context, differences in structural and physiological strategies between tree species could help to mitigate the damage inflicted by climate variability and drought events. Here, we used dendroecological approaches to observe common associations (synchrony) between indexed ring width in Pinus pinea and P. pinaster, as a measure of degree of dependence on climate variation or growth sensitivity to climate, as well as to analyze species growth responses to drought events through the Lloret’s indices of resistance, recovery and resilience. Based on data from 75 mixed and pure plots installed in the Northern Plateau of Spain, we used modeling tools to detect the effect of the mixture, along with climate and stand-related variables, on the short-term responses and long-term growth sensitivity to climate. Our results showed a trade-off between resistance and recovery after the drought episodes. In addition, different attributes of tree species, such as age and size as well as stand density seemed to act synergistically and compensate drought stress in different ways. The presence of age and quadratic mean diameter as covariates in the final synchrony model for P. pinaster reflected the influence of other variables as modulators of growth response to climate. Furthermore, differences in growth synchrony in mixed and monospecific composition suggested the existence of interactions between the two species and some degree of temporal niche complementarity. In mixed stands, P. pinaster exhibited a lower sensitivity to climate than in monospecific composition, whereas P. pinea enhanced its resistance to extreme droughts. These results allowed us to identify the species-specific behavior of P. pinea and P. pinaster to mitigate vulnerability to climate-related extremes.

To document

Abstract

Silverleaf is an important fungal trunk disease of fruit crops, such as Japanese plum (Prunus salicina). It is known that infection by Chondrostereum purpureum results in discolored wood, “silvered” foliage, and tree decline. However, effects on fruit yield and quality have not been assessed. Therefore, the objectives of this study were to determine C. purpureum pathogenicity on P. salicina and the effects on physiology, fruit yield, and quality, in Chile, in 2019 and 2020. Wood samples from affected plum trees were collected in the Chilean plum productive area. Fungi were isolated by plating wood sections from the necrosis margin on culture media. Morphological and molecular characteristics of the isolates corresponded to C. purpureum (98%). Representative isolates were inoculated from healthy plum plants and after 65-d incubation, wood necrotic lesions and silver leaves were visible. Fungi were reisolated, fulfilling Koch’s postulates. To determine Silverleaf effects, xylem water potential and fruit yield and quality were measured in healthy and Silverleaf-diseased plum trees ‘Angeleno’. Water potential was altered in diseased trees, and fruit yield was reduced by 51% (2019) and by 41% (2020) compared to fruit from healthy trees. Moreover, cover-colour, equatorial-diameter, and weight were reduced, and fruit were softer, failing to meet the criteria to be properly commercialized and exported to demanding markets.

To document

Abstract

The maximum size-density relationship describes site carrying capacity, i.e., the maximum number of trees of a given size that can be stocked per unit area (self-thinning line). We analysed whether the self-thinning lines of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) have remained unchanged over time in South Germany, Norway and Finland, i.e., over a wide climatic gradient from Central Europe up to the Arctic circle. The analyses are based on long-term growth and yield experiments measured on individual tree basis over several decades, the oldest experiments established during the early 20th century. The stochastic frontier analysis was used to analyse changes in the species-specific self-thinning lines. The results show that the self-thinning lines have shifted upwards over time in all the regions. Thus, currently stands sustain higher stand densities than in the past. The increase of the maximum density for a given average stem size was more pronounced for pine than for spruce, but similar in all studied geographical regions. In addition, increasing site index was associated with increasing site carrying capacity for spruce and pine in all regions. The results imply that environmental changes have altered site properties in similar fashion across the whole study region. In practical forestry, increased site carrying capacity will reduce mortality and loss of growing stock.

To document

Abstract

The common smooth-hound shark, Mustelus mustelus, is a widely distributed demersal shark under heavy exploitation from various fisheries throughout its distribution range. To assist in the development of appropriate management strategies, the authors evaluate stock structure, site fidelity and movement patterns along the species’ distribution in southern Africa based on a combination of molecular and long-term tag-recapture data. Eight species-specific microsatellite markers (N = 73) and two mitochondrial genes, nicotinamide adenine dehydrogenase subunit 4 and control region (N = 45), did not reveal any significant genetic structure among neighbouring sites. Nonetheless, tagging data demonstrate a remarkable degree of site fidelity with 76% of sharks recaptured within 50 km of the original tagging location. On a larger geographic scale, dispersal is governed by oceanographic features as demonstrated by the lack of movements across the Benguela-Agulhas transition zone separating the South-East Atlantic Ocean (SEAO) and South-West Indian Ocean (SWIO) populations. Microsatellite data supported very shallow ocean-based structure (SEAO and SWIO) and historical southward gene flow following the Agulhas Current, corroborating the influence of this dynamic oceanographic system on gene flow. Moreover, no movements between Namibia and South Africa were observed, indicating that the Lüderitz upwelling formation off the Namibian coast acts as another barrier to dispersal and gene flow. Overall, these results show that dispersal and stock structure of M. mustelus are governed by a combination of behavioural traits and oceanographic features such as steep temperature gradients, currents and upwelling systems.