Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

Species spreading beyond their native ranges are important study objects in ecology and environmental sciences and research on biological invasions is thriving. Along with an increase in the number of publications, the research field is experiencing an increase in the diversity of methods applied and questions asked. This development has facilitated an upsurge in information on invasions, but it also creates conceptual and practical challenges. To provide more transparency on which kind of research is actually done in the field, the distinction between invasion science, encompassing the full spectrum of studies on biological invasions and the sub-field of invasion biology, studying patterns and mechanisms of species invasions with a focus on biological research questions, can be useful. Although covering a smaller range of topics, invasion biology today still is the driving force in invasion science and we discuss challenges stemming from its embeddedness in the social context. Invasion biology consists of the building blocks ‘theory’, ‘case studies’ and ‘application’, where theory takes the form of conceptual frameworks, major hypotheses and statistical generalisations. Referencing recent work in philosophy of science, we argue that invasion biology, like other biological or ecological disciplines, does not rely on the development of an all-encompassing theory in order to be efficient. We suggest, however, that theory development is nonetheless necessary and propose improvements. Recent advances in data visualisation, machine learning and semantic modelling are providing opportunities for enhancing knowledge management and presentation and we suggest that invasion science should use these to transform its ways of publishing, archiving and visualising research. Along with a stronger focus on studies going beyond purely biological questions, this would facilitate the efficient prevention and management of biological invasions.

To document

Abstract

Rapporten utforsker og diskuterer potensialet for økt bruk av Stordata (engelsk: big data) teknologi og metode innenfor instituttets arbeidsområder. I dag benyttes Stordata-tilnærminger til å løse forvaltningsstøtteoppgaver, samt til forskningsformål, særlig i sentrene for presisjonslandbruk og presisjonsjordbruk. Potensialet for økt bruk av Stordata innenfor instituttet er stort. For å realisere potensialet er det behov for god samordning mellom organisasjonsenhetene og utvikling av strategisk kompetanse på fagområdet.

To document

Abstract

Rapporten dokumenterer utvalgte eksempler på bruk av stordata (engelsk: big data) teknologi og metode i NIBIO. Det første eksemplet er knyttet til oppdatering av arealressurskartet AR5, hvor det undersøkes om stordata-tilnærming kan benyttes for å identifisere lokaliteter der kartet må oppdateres. De neste eksemplene er hentet fra fagområdet plantehelse og tar for seg mulighetene for å bruke stordata-metode for å bedre prediksjonsmodeller og gjenkjenning av for skadegjørere.

To document

Abstract

Simple Summary Chronic Wasting Disease is a deadly infectious disease affecting cervids that was discovered in Norway in 2016. CWD can transmit through environmental reservoirs and aggregation and spatial clustering of animals may affect transmission. Deer usually forage on scattered forage, but anthropogenic food sources are often concentrated in space, leading to spatial aggregation. We determined what caused red deer to revisit the same locations in the environment, and the extent to which this was caused by anthropogenic food sources. We document that the most visited sites were indeed anthropogenic, which opens potential avenues to disease mitigation. Abstract Herbivores like cervids usually graze on widely scattered forage, but anthropogenic food sources may cause spatial revisitation and aggregation, posing a risk for transmission of infectious diseases. In 2016, chronic wasting disease (CWD) was first detected in Norway. A legal regulation to ban supplemental feeding of cervids and to fence stored hay bales was implemented to lower aggregation of cervids. Knowledge of further patterns and causes of spatial revisitation can inform disease management. We used a recently developed revisitation analysis on GPS-positions from 13 red deer (Cervus elaphus) to identify the pattern of spatial clustering, and we visited 185 spatial clusters during winter to identify the causes of clustering. Anthropogenic food sources were found in 11.9% of spatial clusters, which represented 31.0% of the clusters in agricultural fields. Dumping of silage and hay bales were the main anthropogenic food sources (apart from agricultural fields), and unfenced hay bales were available despite the regulation. The probability of the clusters being in agricultural fields was high during winter. It may be necessary to find other ways of disposing of silage and enforcing the requirement of fencing around hay bales to ensure compliance, in particular during winters with deep snow.

To document

Abstract

The utilization of detailed digital terrain models entails an enhanced basis for supporting sustainable forest management, including the reduction of soil impacts through predictions of site trafficability during mechanized harvesting operations. Since wet soils are prone to traffic-induced damages, soil moisture is incorporated into several systems for spatial predictions of trafficability. Yet, only few systems consider temporal dynamics of soil moisture, impeding the accuracy and practical value of predictions. The depth-to-water (DTW) algorithm calculates a cartographic index which indicates wet areas. Temporal dynamics of soil moisture are simulated by different DTW map-scenarios derived from set flow initiation areas (FIA). However, the concept of simulating seasonal moisture conditions by DTW map-scenarios was not analyzed so far. Therefore, we conducted field campaigns at six study sites across Europe, capturing time-series of soil moisture and soil strength along several transects which crossed predicted wet areas. Assuming overall dry conditions (FIA = 4.00 ha), DTW predicted 20% of measuring points to be wet. When a FIA of 1.00 ha (moist conditions) or 0.25 ha (wet conditions) were applied, DTW predicted 29% or 58% of points to be wet, respectively. De facto, 82% of moisture measurements were predicted correctly by the map-scenario for overall dry conditions – with 44% of wet measurements deviating from predictions made. The prediction of soil strength was less successful, with 66% of low values occurring on areas where DTW indicated dryer soils and subsequently a sufficient trafficability. The condition-specific usage of different map-scenarios did not improve the accuracy of predictions, as compared to static map-scenarios, chosen for each site. We assume that site-specific and non-linear hydrological processes compromise the generalized assumptions of simulating overall moisture conditions by different FIA.

To document

Abstract

Simple Summary: One of the main insect pests in protected strawberry production are thrips, but little is known about which species of thrips are present in the production system. In this study, we identified the thrips species of adults and larvae present in two strawberry cultivars at a commercial strawberry farm in Denmark. The most abundant species found were Frankliniella intonsa, followed by Thrips tabaci. The abundance of thrips peaked in July (temperature range 18–23 ◦C, mean humidity 65%, mean precipitation 5 mm). More thrips were found in the earlier flowering cultivar. In order to optimize control of thrips, a fundamental first step is knowing which species are present on the target crop. Abstract: Thrips are a major pest in protected strawberry production. Knowledge of thrips species composition could be instrumental for improved thrips management, but very little is known about which species are present in strawberries grown in high-tunnels in Denmark. Thrips (adults and larvae) were sampled in two strawberry tunnels of the cultivars Murano and Furore from May to August 2018, in the middle and in the edges of the tunnels. The most abundant thrips species found in the tunnels were Frankliniella intonsa and Thrips tabaci adults. Frankliniella intonsa were also the most frequently found species of the immatures sampled, followed by T. tabaci larvae, and other species. The number of thrips differed between the two cultivars, sampling times and location in the tunnel. Frankliniella intonsa was more abundant in the middle of the tunnels, while T. tabaci was more abundant in the edge of the tunnels adjacent to the field margins. The number of thrips peaked by the end of July. Both chemical and biological control should consider species composition and occurrence; hence, a fundamental first step for thrips management is to identify the species present on the target crop.

To document

Abstract

Mixed forests are suggested as a strategic adaptation of forest management to climate change. Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) are tree species of high economic and ecological value for European forestry. Both species coexist naturally in a large part of their distributions but there is a lack of knowledge on the ecological functioning of mixtures of these species and how to manage such stands. This paper analyses these species' intra-and inter-specific competition, including size-symmetric vs. size-asymmetric competition, and explore the effect of weather conditions on tree growth and competition. We studied basal area growth at tree level for Scots pine and Norway spruce in mixed versus pure stands in 22 triplets of fully-stocked plots along a broad range of ecological conditions across Europe. Stand inventory and increment cores provided insights into how species mixing modifies tree growth compared with neighbouring pure stands. Five different competition indices, weather variables and their interactions were included and checked in basal area growth models using a linear mixed model approach. Interspecific size-asymmetric competition strongly influenced growth for both tree species, and was modulated by weather conditions. However, species height stratification in mixed stands resulted in a greater tree basal area growth of Scots pine (10.5 cm 2 year − 1) than in pure stands (9.3 cm 2 year − 1), as this species occupies the upper canopy layer. Scots pine growth depended on temperature and drought, whereas Norway spruce growth was influenced only by drought. Interspecific site-asymmetric competition increased in cold winters for Scots pine, and decreased after a drought year for Nor-way spruce. Although mixtures of these species may reduce tree size for Norway spruce, our results suggest that this could be offset by faster growth in Scots pine. How inter-specific competition and weather conditions alter tree growth may have strong implications for the management of Scots pine-Norway spruce mixtures along the rotation period into the ongoing climate change scenario.