Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2022
Authors
Henriette Engen BergAbstract
A significant challenge in medical diagnostics is the development of simple but efficient tools for the detection/quantification of several biomarkers simultaneously using non-invasive sampling techniques. In this regard, the analysis of proteins (proteomics) is essential for understanding cellular processes and biomarker discovery. However, proteins vary greatly in terms of concentration levels and chemical properties in biological materials. Further, low sample sizes of modern biological models (e.g., patient-derived cell cultures, exosomes, and organoids) remain a big analytical challenge. The present work has focused on the brain cancer glioblastoma, which is in great need of increased knowledge and non-invasive sampling techniques. In addition, human organoids, which could act as a future in vitro model for disease modeling and personalized medicine, have been investigated. We have used high-resolution mass spectrometry for protein identification, exploring a selection of miniaturized liquid chromatography formats (for separation) and sample preparation techniques. By implementing these techniques, we have been able to study exosomes, 2D/3D cell cultures, and organoids, identifying over 6300 proteins in a single run using less than 5 µg of protein. The work has provided important insight into the possibilities and challenges of several novel models. It represents a development toward deeper proteomic profiling focusing on maintaining a high protein yield and time efficiency.
Authors
Ercan Yildiz Mehmet Yaman Sezai Ercisli Ahmet Sumbul Osman Sonmez Adem Gunes Mehmet Ramazan Bozhuyuk Darius KviklysAbstract
No abstract has been registered
Authors
Giorgia CarnovaleAbstract
No abstract has been registered
Authors
Giorgia CarnovaleAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Mari Røken Kristin Forfang Yngvild Wasteson Anita Haug Haaland Hans Geir Eiken Snorre Hagen Ane Mohn BjellandAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Tatiana Gagkaeva Aleksandra Orina Olga Gavrilova Marina Usoltseva Jo Anne Crouch Karin Normann Kate Entwistle Torfinn Torp Tatsiana EspevigAbstract
Clarireedia spp., Fusarium culmorum, and Microdochium nivale are destructive and widespread fungal pathogens causing turfgrass disease. Chemical control is a key tool for managing these diseases on golf greens but are most effective when used in a manner that reduces overall inputs, maximizes fungicide efficacy, and minimizes the risk of fungicide resistance. In this study, sensitivity to eight commonly used fungicides was tested in 13 isolates of Clarireedia spp., F. culmorum, and M. nivale via in vitro toxicity assays. Fungicide sensitivity varied significantly among the three species, with isolates of F. culmorum showing the least sensitivity. The sensitivity of M. nivale to all tested fungicides was high (with the exception of tebuconazole), but only four fungicides (Banner Maxx®, Instrata® Elite, Medallion TL, and Switch® 62,5 WG) suppressed the growth of M. nivale completely at a concentration of 1% of the recommended dose. All three fludioxonil-containing fungicides either alone (Medallion TL) or in combination with difeconazole (Instrata® Elite) or cyprodinil (Switch® 62,5 WG) had the same high efficacy against isolates of both M. nivale and Clarireedia spp. On average, the Clarireedia isolates tested in this study showed high sensitivity to the tested fungicides, except for Heritage (azoxystrobin). The observed variation in sensitivity among isolates within the same fungal species to different fungicides needs further investigation, as an analysis of the differences in fungal growth within each fungal group revealed a significant isolate × fungicide interaction (p < .001).
Authors
Bente Føreid Julia Maria SzocsAbstract
No abstract has been registered