Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

The Expert Group for Technical Advice on Organic Production (EGTOP) was requested to advise on the use of several substances in organic production. The Group discussed whether the use of these substances is in line with the objectives and principles of organic production and whether they should therefore be included in Annex III of Reg. (EU) 2021/1165. With respect to feed the Group recommends the following: - Calcium hydroxide should not be included in Annex III. - Calcium pidolate should not be included in Annex III. - Algal oil should be included in Annex III, part A. - The trace elements; Copper (II) chelate of protein hydrolysates, Iron (II) chelate of protein hydrolysates, Manganese chelate of protein hydrolysates and Zinc chelate of protein hydrolysates should be included in Annex III, part B. - The feed for special nutritional purposes; Propylene glycol should be included in Annex III, part A. - The feed for special nutritional purposes; Calcium chloride should be included in Annex III, part A. - The feed for special nutritional purposes; Calcium propionate should not be included in Annex III. - The feed for special nutritional purposes; Iron dextran should be included in Annex III, part B. - The feed for special nutritional purposes; Iron (II) fumarate should not be included in Annex III. - Vegetable charcoal should not be included in Annex III. - Selenised yeast saccharomyces cerevisiae cncm i-3060, inactivated, should be included in Annex III, part B. With respect to pet food, the Group recommends the following: - Algae flour should not be included in Annex III. - Papain should be included in Annex III, part B.

To document

Abstract

The Expert Group for Technical Advice on Organic Production (EGTOP) was requested to advise on the use of several substances with plant protection or fertilising effects in organic production. The Group discussed whether the use of these substances is in line with the objectives and principles of organic production, and whether they should therefore be included in Reg. (EU) 2021/1165. With respect to Annex I to Reg. (EU) 2021/1165, the Group recommends the following: - Aqueous extract from the germinated seeds of sweet Lupinus albus should be included in Annex I, part 2 (low risk active substances). - Low risk active substances of plant or animal origin should be authorised generically in Annex I, part 2, provided that they are not of GMO origin. This would mean that they can be used in organic production as soon as they are approved under pesticide legislation, without the need for evaluation by EGTOP and without explicit mentioning in Annex I to Reg. (EU) 2021/1165. - Ferric pyrophosphate should be included in Annex I, part 2 (low risk active substances). - The entries for deltamethrin and lambda-cyhalothrin should be modified as follows: (i) for both substances, the authorisation should be limited until 2026; (ii) for the time period until 2026, deltamethrin should also be authorised against Rhagoletis completa with the same restrictions as for other uses, i.e. ‘only in traps with specific attractants’. With respect to Annex II to Reg. (EU) 2021/1165, the Group recommends the following: - The entry on ‘Composted or fermented household waste’ should be changed to ‘Composted or fermented bio-waste’. - Recovered struvite and precipitated phosphate salts should be included in Annex II with the following restrictions: (i) Products must meet the requirements defined by Reg. (EU) 2019/1009, for products derived from waste materials. (ii) Animal manure as source material cannot have factory farming origin. - Bone charcoal should not be included in Annex II. - Potassium chloride (muriate of potash) should be included in Annex II with the following restriction: Only of natural origin. - Phosphogypsum should not be included in Annex II. - Comment on widespread environmental contamination: In the Group’s opinion, circular economy is important and should be widely adopted also in organic production. However, recycled materials may be contaminated with undesirable substances such as microplastic, heavy metals, veterinary drugs or pesticides. The Group does not recommend any changes in the organic legislation at the moment. However, the Group highlights these risks and recommends that the European Commission and Member States take them into consideration within the framework of policies and regulations concerning organic farming development, circular economy and environmental protection. Moreover, these risks should be continuously monitored and preventively managed in the use of pesticides, veterinary drugs, plastic or any other potentially polluting materials and in the production of organic fertilizers from recycled materials. Finally, the organic sector should be aware that the proposed measures can reduce contaminations (in frequency and in amounts), but may not always completely eliminate them from the organic production chain. Under these circumstances, a certain level of contamination can be difficult to avoid in organic products. The issue of how to handle such residues is hotly debated at the moment. The Group would welcome harmonization among EU member states of control practises and on actions taken in case of detections of residues of non-allowed products on organic products and in organic farms.

To document

Abstract

Light spectral quality is known to affect flavonoid biosynthesis during fruit ripening. However, the response of fruits to different light conditions, when ripening autonomously from the parent plant (detached), has been less explored. In this study, we analyzed the effect of light quality on detached and naturally ripening (attached) non-climacteric wild bilberry (Vaccinium myrtillus L.) fruits accumulating high amounts of anthocyanins and flavonols. Our results indicated contrasting responses for the accumulation of phenolic compounds in the berries in response to red and blue light treatments. For detached berries, supplemental blue light resulted in the highest accumulation of anthocyanins, while naturally ripening berries had elevated accumulation under supplemental red light treatment. Both red and blue supplemental light increased the expression levels of all the major structural genes of the flavonoid pathway during ripening. Notably, the key regulatory gene of anthocyanin biosynthesis, VmMYBA1, was found to express fivefold higher under blue light treatment in the detached berries compared to the control. The red light treatment of naturally ripening berries selectively increased the delphinidin branch of anthocyanins, whereas in detached berries, blue light increased other anthocyanin classes along with delphinidins. In addition, red and far-red light had a positive influence on the accumulation of flavonols, especially quercetin and myricetin glycoside derivatives, in both ripening conditions. Our results of differential light effects on attached and detached berries, which lacks signaling from the mother plant, provide new insights in understanding the light-mediated regulatory mechanisms in non-climacteric fruit ripening.

To document

Abstract

The morphogenetic changes of the bud meristem during floral initiation in gooseberry were examined by scanning electron microscopy. Six floral stages, similar to those reported for black currants, were identified. We also studied the environmental control of shoot growth and floral initiation of cvs. Mucurines, Pax and Xenia in two experiments in daylight phytotron compartments at 12, 18 and 24°C. Under natural daylength conditions at Ås, Norway (69°40’N), shoot growth started to decline by mid-August and ceased in early September. Cessation of growth was associated with floral initiation at 18 and 12°C, while at 24°C, only ‘Mucurines’ initiated floral primordia. Floral Stage 2 was reached by 3 September in ‘Mucurines’ and ‘Xenia’ at 18 and 12°C and nearly 2 weeks later in ‘Pax’. In a second experiment with controlled photoperiods, all cultivars ceased growing and initiated flowering in 10-h SD within 2–3 weeks, while in 20-h LD, growth continued for 8 weeks without floral initiation. Under 10-h SD conditions, all cultivars initiated flowers also at 24°C. Flowering performance in the following spring verified these results. We conclude that gooseberry is an obligatory SD plant with a critical photoperiod of 15–16 h.